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Inferring Trajectories of Floor-Bound Objects Using 
Video Analysis
David Kordahl, Centenary College of Louisiana, Shreveport, LA

It is not possible in general to infer the full three-dimen-
sional (3D) trajectory of an object from a single two- 
dimensional (2D) video, but it is possible in special cases. 

Video analysis is often used in physics education to infer tra-
jectories of objects moving in planes that are roughly parallel 
to that of the camera’s image plane. This article shows how it is 
possible to infer the trajectory of an object moving in a plane 
perpendicular to the image plane. The trajectory of an object 
moving around on the floor is reconstructed, correcting for 
projection, and an explicit algorithm for this process is given, 
with equations that allow direct calculation of floor coordi-
nates from apparent video coordinates.

Introduction
For the past few decades, physics educators have routinely 

used video analysis to explore the trajectories of objects trav-
eling in a single plane. The problem of projection errors for 
objects that stray outside that plane has been discussed under 
names such as “perspective correction”1 and “parallax error,”2 

though the standard council usually boils down to the advice 
that one should back up as far as possible before taking a  
video.3

We can easily see why this is good advice via a negative 
example. Figure 1 shows a partial frame from a smartphone 
video of a toy car driving away from the camera with a nearly 
constant velocity (see video in the supplementary material).
As the car recedes from the camera, its apparent velocity dra-
matically decreases. The complication, here, is that the plane 
of the car’s motion is not parallel to the plane of the camera 
image, and light rays bouncing from the car into the camera 
have an ever-smaller angular displacement the further away 
the car travels.

Computer imaging experts have effectively solved the 
problem of how the 3D world can be projected into a 2D 
image,4 but it is not possible in general to reconstruct the 3D 
world from a single 2D image.5 However, there are exceptions. 
If we understand the particulars of our situation, including 
the position of our camera and its orientation relative to fixed 
surfaces, reconstruction may be possible. Figure 2 illustrates 
this idea schematically. For a pinhole camera, single points on 
the floor map to single points in the image plane. This sug-
gests that if we have an unobstructed view of a surface whose 
geometry is known, the motion of objects moving along that 
surface may be reconstructed.

This article shows how to obtain the spatial trajectory of 
an object moving around on a flat floor from its apparent tra-
jectory in a video. This analysis requires length references to 
be embedded in the video in a particular way and requires a 
few simple calculations from the video data. The next section 
derives these expressions in detail for the pinhole geometry, 
using ray tracing. Then, in the last section, this method is 

Fig. 1. In a video of a car traveling away from a 
camera at a nearly constant velocity (frame cap-
ture) (a), the apparent velocity of the car in the 
image will decrease as a function of time (plot 
from Tracker) (b). The length references coming 
toward the camera appear vertical in the camera 
image. The length reference on the far wall is 
parallel to the image plane.

(a)

(b)

Fig. 2. There is a one-to-one relationship between 
points on the floor and points projected into the 
camera, as can be seen easily for the simple 
example of a pinhole camera. The “Projection 
correction” section works out how to correct 
projection errors for objects moving on the 
ground, guided by this physical model.

©2025 Author(s). Published under an exclusive license by AAPT.
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lengths (subscript “0”) rather than physical lengths (subscript 
“1”). The far wall, in this situation, is 6.0 m from the camera, 
so the length δ1 is just 6.0 m, as is the distance δ0 from the 
pinhole to image screen (though this value could be inferred, 
as discussed below). This hypothetical situation is three-di-
mensional, since light rays bouncing off the horizontal floor 
go through a pinhole and onto a vertical screen.

Figure 4 shows the “top-down” projection of the pinhole 
camera geometry, where items on the right represent items 
in the object space, and items on the left represent images 
in the pinhole camera. From this geometric setup, one can 
perform the ray tracing to relate object and image lengths. 
For instance, looking at Fig. 4, one can find δ0 from similar 
triangles:

                                     

                                 

(1)

Though δ0 is a fictitious length (since we are not, in fact, 
using a pinhole camera), it tells us about the image magnifi-
cation (since, for a pinhole camera, magnification = δ0 / δ1). 
Transparently, when δ0

x  =  δ1  
x, then δ0 = δ1.

Next, we may look at the rays propagating in the vertical 
plane where x1 = 0, containing the “vertical” length standard, 
as pictured in Fig. 5. In the camera coordinates, we may iden-
tify as (x0

A, y0
A) the point on the image of the vertical length 

standard that appears higher up (i.e., the place in the image 
picturing the point on the physical length δ1

y that is farthest 
from the camera), and we may identify as ( x0

B, y0
B ) the point 

that appears lower down on the vertical length standard (i.e., 
the image of the point on δ1

y that is nearest to the camera). We 
should find that

x0
A    x0

B, and  y0
A  > y0

B .

summarized and applied to the data shown in Fig. 1. Though 
this example is quite boring, it provides a useful first step for 
educators who are interested in expanding the possibilities of 
video analysis.

Projection correction
To simplify the derivation, we can press forward with the 

pinhole camera model of Fig. 2. Parameters can be extracted 
in terms of this model, allowing us to work backward from 
image to object coordinates.

Length references can be embedded in a sample video 
to make its geometry easier to interpret. Observe the meter 
sticks on the floor in Fig. 1. One stick has been deliberately 
positioned so that it appears exactly horizontal, and the five 
others have been positioned so that they appear to be exactly 
vertical in the image. This choice of floor coordinates has the 
camera with x1 = 0 in the middle of the scene, aligned with 
the “vertical” length references. The y1 = 0 coordinate desig-
nates the position directly below the camera. In this (x1, y1) 
Cartesian grid on the floor, x1 values may be either positive or 
negative, but y1 values are strictly positive, since negative y1 
values would be behind the camera.

There are six relevant lengths in this setup—three in the 
“object” space of the floor, and three in the “image” space of 
the camera. The “object” lengths are measured on the floor: 
the length δ1 from below the camera to the horizontal length 
reference, the length δ1

x  of the horizontal length reference, 
and the length δ1

y of the “vertical” length reference. Their 
counterpart lengths in the image are δ0, δ0

x  , and δ0     
y . These 

lengths are illustrated in Fig. 3.
The horizontal length reference has the physical length  

δ1
x , and the vertical length reference has the physical  

length  δ1
y. In Fig. 3, these lengths have been labeled as δ0

x and 
δ0

y, respectively, since the lengths in the picture are apparent 

Fig. 3. The same still as in Fig. 1, but labeled with the refer-
ence lengths dx

0 and d0
y . In this case, dx

0 = dx
1 = 1.00 m, while 

dx
1   d0

y , since d y
1 = 3.00 m while  d0

y  = 0.78 m. The distance 
from the base of the camera to the horizontal reference dx

1 
is 6.0 m, so we can conclude that d1 = 6.0 m. Since dx

0 = dx
1, 

we can also conclude that d0 = 6.0 m.

Fig. 4. Relating pinhole camera dimensions to physical dimen-
sions—a “top-down” projection. The lengths d1 (from camera to 
horizontal length reference), dx

1 (the horizontal length reference), 
and d y

1 (the “vertical” length reference) are all measured physical-
ly. The “length” d0 is a fictitious value, but should equal d1 when  
dx

0 = dx
1. In this figure, the x0 coordinate increases going up, and the x1 

coordinate increases going down, since the pinhole camera inverts 
the image.

©2025 Author(s). Published under an exclusive license by AAPT.
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Correction example
This method can now be summarized, and everything can 

be put in terms of measured values. For an object traveling 
on the ground, we want to go from the apparent (x0, y0) co-
ordinates in video data to infer the (x1, y1) coordinates for a 
Cartesian grid on the ground.

A further analysis of Fig. 5 allows us to infer δz, the pinhole 
height, in terms of our length standards:

		    	      (2)

This inferred pinhole height δz should approximate how 
high the physical camera aperture is from the ground.

Relating our camera coordinates (x0, y0) to the floor coor-
dinates (x1, y1) can be simplified if we identify the midpoint   
y0

C of our camera coordinates—where, as marked in Fig. 5, 
rays of light enter perpendicular to the pinhole.  Suppose that 
we have obtained our observed length δ0

y from the difference 
between y0

A and y0
B :

δ0
y =  δ0

A –  y0
B.                                                                                    (3)

One can then find the midpoint y0
C in terms of y0

A. Looking at 
similar triangles in Fig. 5, we can say that

	         	                                           (4)

This can then be solved for y0
C :

				        (5)

With all these parts in place, we can now calculate the 
mapping between the points in the video and the points on 
the ground. The sketches in Fig. 6 help to sharpen this intu-
ition. Figure 6(a) is similar to Fig. 4, and allows us to deter-
mine, via similar triangles, that

			           	     (6)

Figure 6(b) is similar to Fig. 5, but it illustrates the vertical 
plane containing the point (x1, y1) as pictured in Fig 6(a). 
Again, from similar triangles,

		     (7)

Solving these expressions for x1 and y1, we can now recon-
struct the physical coordinates as

	                                        

  (8)

These expressions can now be applied to video data. To 
simplify them, we may set δ0 = δ1 and δx

0 = δx
1; this has been 

done in Eq. (9), which makes calculations feasible using a 
spreadsheet.

Fig. 5. Relating pinhole camera dimensions to physical dimen-
sions—side view, in the plane where x1 = 0. The lengths d1, from 
the camera to the wall, and d1

y, from the wall to the “vertical” 
scale marker, are measured physically. The parameter d0 has been 
determined by Eq. (1), and the inferred “pinhole height” dz (which 
approximates the physical height of the camera from the ground) 
is inferred from how foreshortened the observed length d0

y is in 
the image. To take account of image inversion, the y0 coordinate 
increases vertically downward, and the y1 coordinate increases 
to the right. The coordinate y0

C marks where light rays entering 
parallel to the ground are imaged in this plane.

Fig. 6. Ray tracing for a general point (x1, y1) on the floor to a 
point (x0, y0) in the image. (a) A “top-down” projection, as in Fig. 4, 
showing where (x1, y1) on the ground will be mapped horizontally 
to a point x0 in the image. (b) A vertical plane, as in Fig. 5. This 
plane contains (x1, y1), the pinhole, and the point (x1, y1) = (0, 0) 
directly below the pinhole, which helps to determine the point y0 
in the image plane.

(b)

(a)
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This analysis has been carried out for the position of the 
car in the video whose still was used in Figs. 1 and 3. The 
apparent vertical position of the car as a function of time that 
has been plotted in Fig. 7 is the same as that given directly by 
Tracker in Fig. 1, but once this data is analyzed using Eq. (9), 
it reveals a car whose recessional velocity is a constant  
36 cm/s. This result matches both qualitatively and quantita-
tively with observations.

Though this analysis is simple, it immediately suggests 
possible applications. On the one hand, this analysis can be 
applied directly to objects moving across the floor—collid-
ing hover pucks, say, or toy cars that can accelerate. On the 
other hand, the spirit of this analysis might also be applied 
more generally. If we can restrict the motion of an object to 
a 2D surface whose shape is well characterized, it should be 
possible to infer an object’s trajectory in space from its ap-
parent coordinates in a video. Generalizing this approach for 
a curved surface—say, for a coin rolling in a potential well—
could present a worthwhile challenge for a motivated student. 
The article by Erdnüß6 may help to bridge from the notation 
used here that of the computer vision experts.

Supplementary material
Readers can view the video in the supplementary material at 
TPT Online.
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To do this, we follow these steps:
1.	 Set up the camera without any tilt, and position perpen-

dicular length standards, δ1
x and δ1

y, such that the two 
meet at a perpendicular corner at a distance δ1 from 
the base of the camera. In the camera image, δ1

x should 
appear horizontal, while δ1

y should appear vertical but 
foreshortened, with apparent length δ0

y
 (see Fig. 3).

2.	 Record a video of an object moving on the ground.
3.	 Extract apparent position (x0, y0) vs. time from the 

video using software (e.g., Tracker or Logger Pro), with 
the horizontal length standard δ1

x setting the scale. Note 
the apparent video coordinates (x0

A, y0
A) of the end of the 

“vertical” length standard δy
1 that is farthest from the 

camera (i.e., the end whose distance from the camera 
base is δ1).

4.	 Calculate the floor position (x1, y1) in terms of video 
positions (x0, y0):

                              (9)

Fig. 7. Apparent position y0 vs. t (a) of the toy car in the video fea-
tured in Figs. 1 and 3, and reconstructed position and y1 vs. t (b).

(a)

(b)
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