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Inferring Trajectories of Floor-Bound Objects Using

Video Analysis

David Kordahl, Centenary College of Louisiana, Shreveport, LA

tis not possible in general to infer the full three-dimen-

sional (3D) trajectory of an object from a single two-

dimensional (2D) video, but it is possible in special cases.
Video analysis is often used in physics education to infer tra-
jectories of objects moving in planes that are roughly parallel
to that of the camera’s image plane. This article shows how it is
possible to infer the trajectory of an object moving in a plane
perpendicular to the image plane. The trajectory of an object
moving around on the floor is reconstructed, correcting for
projection, and an explicit algorithm for this process is given,
with equations that allow direct calculation of floor coordi-
nates from apparent video coordinates.

Introduction

For the past few decades, physics educators have routinely
used video analysis to explore the trajectories of objects trav-
eling in a single plane. The problem of projection errors for
objects that stray outside that plane has been discussed under
names such as “perspective correction”! and “parallax error,”?
though the standard council usually boils down to the advice
that one should back up as far as possible before taking a
video.?

We can easily see why this is good advice via a negative
example. Figure 1 shows a partial frame from a smartphone
video of a toy car driving away from the camera with a nearly
constant velocity (see video in the supplementary material).
As the car recedes from the camera, its apparent velocity dra-
matically decreases. The complication, here, is that the plane
of the car’s motion is not parallel to the plane of the camera
image, and light rays bouncing from the car into the camera
have an ever-smaller angular displacement the further away
the car travels.

Computer imaging experts have effectively solved the
problem of how the 3D world can be projected into a 2D
image,* but it is not possible in general to reconstruct the 3D
world from a single 2D image.> However, there are exceptions.
If we understand the particulars of our situation, including
the position of our camera and its orientation relative to fixed
surfaces, reconstruction may be possible. Figure 2 illustrates
this idea schematically. For a pinhole camera, single points on
the floor map to single points in the image plane. This sug-
gests that if we have an unobstructed view of a surface whose
geometry is known, the motion of objects moving along that
surface may be reconstructed.

This article shows how to obtain the spatial trajectory of
an object moving around on a flat floor from its apparent tra-
jectory in a video. This analysis requires length references to
be embedded in the video in a particular way and requires a
few simple calculations from the video data. The next section
derives these expressions in detail for the pinhole geometry,
using ray tracing. Then, in the last section, this method is
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Fig. 1. In a video of a car traveling away from a
camera at a nearly constant velocity (frame cap-
ture) (a), the apparent velocity of the car in the
image will decrease as a function of time (plot
from Tracker) (b). The length references coming
toward the camera appear vertical in the camera
image. The length reference on the far wall is
parallel to the image plane.

Image

Fig. 2. There is a one-to-one relationship between
points on the floor and points projected into the
camera, as can be seen easily for the simple
example of a pinhole camera. The “Projection
correction” section works out how to correct
projection errors for objects moving on the
ground, guided by this physical model.
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Fig. 3. The same still as in Fig. 1, but labeled with the refer-
ence lengths §% and d%. In this case, 6% = 6§ = 1.00 m, while
% # &%, since 6% = 3.00 m while 64 = 0.78 m. The distance
from the base of the camera to the horizontal reference &%
is 6.0 m, so we can conclude that §; = 6.0 m. Since 6% = 6%,
we can also conclude that J, = 6.0 m.

summarized and applied to the data shown in Fig. 1. Though
this example is quite boring, it provides a useful first step for
educators who are interested in expanding the possibilities of
video analysis.

Projection correction

To simplify the derivation, we can press forward with the
pinhole camera model of Fig. 2. Parameters can be extracted
in terms of this model, allowing us to work backward from
image to object coordinates.

Length references can be embedded in a sample video
to make its geometry easier to interpret. Observe the meter
sticks on the floor in Fig. 1. One stick has been deliberately
positioned so that it appears exactly horizontal, and the five
others have been positioned so that they appear to be exactly
vertical in the image. This choice of floor coordinates has the
camera with x; = 0 in the middle of the scene, aligned with
the “vertical” length references. The y; = 0 coordinate desig-
nates the position directly below the camera. In this (x;, y;)
Cartesian grid on the floor, x; values may be either positive or
negative, but y; values are strictly positive, since negative y,
values would be behind the camera.

There are six relevant lengths in this setup—three in the
“object” space of the floor, and three in the “image” space of
the camera. The “object” lengths are measured on the floor:
the length &, from below the camera to the horizontal length
reference, the length §;* of the horizontal length reference,
and the length 6} of the “vertical” length reference. Their
counterpart lengths in the image are 8, 6§, and 8§ These
lengths are illustrated in Fig. 3.

The horizontal length reference has the physical length

1, and the vertical length reference has the physical
length &7 In Fig. 3, these lengths have been labeled as 8§ and
08¢, respectively, since the lengths in the picture are apparent
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Fig. 4. Relating pinhole camera dimensions to physical dimen-
sions—a “top-down” projection. The lengths §; (from camera to
horizontal length reference), 4% (the horizontal length reference),
and J% (the “vertical” length reference) are all measured physical-
ly. The “length” g, is a fictitious value, but should equal §; when
% = 6%. In this figure, the x, coordinate increases going up, and the x
coordinate increases going down, since the pinhole camera inverts
the image.

lengths (subscript “0”) rather than physical lengths (subscript
“1”). The far wall, in this situation, is 6.0 m from the camera,
so the length §) is just 6.0 m, as is the distance §, from the
pinhole to image screen (though this value could be inferred,
as discussed below). This hypothetical situation is three-di-
mensional, since light rays bouncing off the horizontal floor
go through a pinhole and onto a vertical screen.

Figure 4 shows the “top-down” projection of the pinhole
camera geometry, where items on the right represent items
in the object space, and items on the left represent images
in the pinhole camera. From this geometric setup, one can
perform the ray tracing to relate object and image lengths.
For instance, looking at Fig. 4, one can find §, from similar
triangles:

S _ 8
5 6 (1)
6){
5 =6-2.
— 0 iy

1

Though 9§, is a fictitious length (since we are not, in fact,
using a pinhole camera), it tells us about the image magnifi-
cation (since, for a pinhole camera, magnification = §,/4).
Transparently, when 6§ = 67, then §, = §;.

Next, we may look at the rays propagating in the vertical
plane where x; = 0, containing the “vertical” length standard,
as pictured in Fig. 5. In the camera coordinates, we may iden-
tify as (x4, y) the point on the image of the vertical length
standard that appears higher up (i.e., the place in the image
picturing the point on the physical length & that is farthest
from the camera), and we may identify as ( x§, y§ ) the point
that appears lower down on the vertical length standard (i.e.,
the image of the point on &/ that is nearest to the camera). We
should find that

x§ = x§,and yf > yB.
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A further analysis of Fig. 5 allows us to infer §,, the pinhole
height, in terms of our length standards:

5 =% ﬁ(al -&). (2)

) 61), 50

This inferred pinhole height §, should approximate how
high the physical camera aperture is from the ground.

Relating our camera coordinates (x, y,) to the floor coor-
dinates (x;, ;) can be simplified if we identify the midpoint
y§ of our camera coordinates—where, as marked in Fig. 5,
rays of light enter perpendicular to the pinhole. Suppose that
we have obtained our observed length §§ from the difference
between yg*and y& :

8= 84— y&. (3)

One can then find the midpoint y§ in terms of y{'. Looking at
similar triangles in Fig. 5, we can say that

Yo=Yy _ 5. (4)
5 5

0

This can then be solved for y§:
8,0 )
C z
Yo =V (1? + 05 ‘
1
With all these parts in place, we can now calculate the
mapping between the points in the video and the points on
the ground. The sketches in Fig. 6 help to sharpen this intu-
ition. Figure 6(a) is similar to Fig. 4, and allows us to deter-
mine, via similar triangles, that
%5 % ©

b, Wi

Figure 6(b) is similar to Fig. 5, but it illustrates the vertical
plane containing the point (x;, y,) as pictured in Fig 6(a).
Again, from similar triangles,

)’(():_yo _ 6, ' 7)
ooy vs

Solving these expressions for x; and y,, we can now recon-
struct the physical coordinates as

<xo_x:)6z

S YR ®)
()’o _yo)

y = 6,0,

1 ()’(?_yo).

These expressions can now be applied to video data. To
simplify them, we may set §, = §; and 8 = §}; this has been
done in Eq. (9), which makes calculations feasible using a
spreadsheet.
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Fig. 5. Relating pinhole camera dimensions to physical dimen-
sions—side view, in the plane where x; = 0. The lengths §,, from
the camera to the wall, and 6., from the wall to the “vertical”
scale marker, are measured physically. The parameter §, has been
determined by Eq. (1), and the inferred “pinhole height” §, (which
approximates the physical height of the camera from the ground)
is inferred from how foreshortened the observed length 5§ is in
the image. To take account of image inversion, the y, coordinate
increases vertically downward, and the y, coordinate increases
to the right. The coordinate y§ marks where light rays entering
parallel to the ground are imaged in this plane.
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Fig. 6. Ray tracing for a general point (x4, y;) on the floor to a
point (xo, ¥o) in the image. (a) A “top-down” projection, as in Fig. 4,
showing where (x4, y4) on the ground will be mapped horizontally
to a point x in the image. (b) A vertical plane, as in Fig. 5. This
plane contains (x4, y;), the pinhole, and the point (x4, y;) = (0, 0)
directly below the pinhole, which helps to determine the point y,
in the image plane.

Correction example

This method can now be summarized, and everything can
be put in terms of measured values. For an object traveling
on the ground, we want to go from the apparent (x,, y,) co-
ordinates in video data to infer the (x;, y;) coordinates for a
Cartesian grid on the ground.
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Fig. 7. Apparent position y, vs. t (a) of the toy car in the video fea-

tured in Figs. 1 and 3, and reconstructed position and y, vs. t (b).

To do this, we follow these steps:

1. Set up the camera without any tilt, and position perpen-
dicular length standards, 6;° and 87, such that the two
meet at a perpendicular corner at a distance §; from
the base of the camera. In the camera image, §;* should
appear horizontal, while 8{ should appear vertical but
foreshortened, with apparent length & (see Fig. 3).

2. Record a video of an object moving on the ground.

@

Extract apparent position (x, ;) vs. time from the
video using software (e.g., Tracker or Logger Pro), with
the horizontal length standard §{* setting the scale. Note
the apparent video coordinates (x4, y4) of the end of the
“vertical” length standard 8, that is farthest from the
camera (i.e., the end whose distance from the camera
base is §;).

4. Calculate the floor position (x;, y,) in terms of video
positions (xg, y;):

_ 60y (61 _61y)(x0 _XOA)
6 (6,6 ) =6 (v~ )
5,67(8, —¢)
66,67 ) =6 (v —y0)

1

I =

This analysis has been carried out for the position of the
car in the video whose still was used in Figs. 1 and 3. The
apparent vertical position of the car as a function of time that
has been plotted in Fig. 7 is the same as that given directly by
Tracker in Fig. 1, but once this data is analyzed using Eq. (9),
it reveals a car whose recessional velocity is a constant
36 cm/s. This result matches both qualitatively and quantita-
tively with observations.

Though this analysis is simple, it immediately suggests
possible applications. On the one hand, this analysis can be
applied directly to objects moving across the floor—collid-
ing hover pucks, say, or toy cars that can accelerate. On the
other hand, the spirit of this analysis might also be applied
more generally. If we can restrict the motion of an object to
a 2D surface whose shape is well characterized, it should be
possible to infer an object’s trajectory in space from its ap-
parent coordinates in a video. Generalizing this approach for
a curved surface—say, for a coin rolling in a potential well—
could present a worthwhile challenge for a motivated student.
The article by Erdniif}® may help to bridge from the notation
used here that of the computer vision experts.

Supplementary material
Readers can view the video in the supplementary material at
TPT Online.
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