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As anyone who has blown across the mouth of a beer bottle knows, beer bottles have a well-
defined fundamental frequency. This paper shows how a beer bottle’s acoustical resonance can be
modeled as a one-dimensional driven-damped oscillator and includes enough detail to be useful in
undergraduate laboratory experiments. While the frequency-domain Green’s function of the bottle
can be extracted through sequential pure-tone measurements, sufficient data to fit the model’s
parameters can be collected in just a few seconds when Fourier methods are used.
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I. INTRODUCTION

In 1979, the American Journal of Physics (AJP) pub-
lished “The great beer bottle experiment,” which de-
scribed a method for allowing introductory physics stu-
dents to measure the speed of sound using tuning forks
and a beer bottle [? ]. The authors noted that the ex-
periment was successful, but added a caveat. “The ex-
periment is well received by our students for the wrong
reasons (imagine entering a lab, finding that your appa-
ratus consists of dozens of beer bottles, and being told
that the lab demonstrators emptied them all last night).”
This article also describes acoustical experiments involv-
ing beer bottles, which we also hope will be well received
by students—even if for equally wrong reasons.
The experiments presented below follow a suggestion

from another AJP article. In 2016, Wilkinson et al. [? ]
showed how soda cans may be modeled as driven-damped
oscillators. They used pure tones to measure a can’s
acoustical response using steady-state amplitudes, but
mentioned that the cavity’s acoustical response might
also be obtained from shorter bursts of sound analyzed
via a fast Fourier transform (FFT). In the present article,
we apply that suggestion to beer bottles. We first review
the correct treatment of the steady-state case, and then
demonstrate how the bottle’s acoustical response may be
inferred using FFTs.
The experiments described here are simple enough

that they may be readily performed by undergraduates.
They use fundamental concepts from the undergrad-
uate curriculum, including driven oscillations, Green’s
functions—and, of course, Fourier transforms.
While Fourier methods are ubiquitous in physics, there

is no single standard way to introduce them to under-
graduate students. Some first encounter them in mathe-
matical methods coursework [? ], while others might first
encounter them during a course in electromagnetism [?
]. The experiments here are designed to complement the
discussions of periodic forcing in an analytical mechan-
ics course [? ]. They investigate a situation that is not
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FIG. 1. Experimental setup. A microphone (A) measures the
signal from a speaker (B), which is driven by an amplifier (C).
(The stack of books boosts the speaker up to the microphone
height.) Time-series data from the amplifier voltage and the
microphone signal are measured and fed into the computer
(D), which may also monitor the room temperature via an
optional thermometer (E). Each measurement is taken both
with the bottle below the microphone, and without the bottle.

quite obvious, but for which it is easy to carry out both
experiments and calculations.

Our setup is straightforward and inexpensive, as shown
in Fig. ??. Signals are generated using the open-source
audio software, Audacity [? ], and ported via a head-
phone cable into a speaker amplifier ($34.00), which pow-
ers a passive desktop speaker ($35.00). The amplified sig-
nal is measured by a Vernier Differential Voltage Probe
($49.00), and the sound is measured by a Vernier Micro-
phone ($55.00), which connects to the computer using a
Vernier LabQuest Mini (Model 2 costs $189.00). Vernier
devices make data collection easy, but one could always
use other hardware. In the measurements below, a single
12 oz. heritage beer bottle has been used.

After reviewing in Sec. ?? how the driven-damped os-
cillator model applies to this setup, this paper gives three
different approaches to recovering the frequency-domain
Green’s functionG(ω) experimentally. Sec. ?? shows how
the phase and amplitude of G(ω) can be extracted using
pure sinusoidal tones, improving upon the approach of
Wilkinson et al. Sec. ?? then shows how the same infor-
mation can be obtained with just a few seconds’ worth of
data using Fourier methods and chirp signals. The sub-
sections of Sec. ?? describe two different possible exer-

mailto:dkordahl@centenary.edu


2

cises, one (??) which extracts resonance parameters using
only FFT magnitudes, and the other (??) which also em-
ploys the FFT phase. Sec. ?? concludes with suggested
extensions to this work.

II. BASIC THEORY

The standard physical model of acoustical resonance
advanced by Helmholtz [? ] considers a volume of air
contained in the mouth of a bottle that is pushed back
and forth by oscillating pressure differences between the
inside and the outside of the bottle. The plug’s reso-
nance frequency ω0 can be estimated in terms of the bot-
tle’s volume and the opening’s cross-sectional area [? ].
When this oscillation is treated as driven and damped,
two more parameters are introduced [? ]. The first re-
flects that the bottle’s pressure oscillations are driven and
are coupled to the outside pressure oscillations via a di-
mensionless parameter α. The second captures the fact
that the bottle’s pressure oscillations are damped, and,
in the absence of outside forces, will decay in amplitude
as e−βt.
The dynamical equation for pB(t), the pressure contri-

bution of the bottle at the location of the microphone,
should include a restoring force proportional to ω2

0 , an
external force proportional to pS(t), the pressure con-
tribution of the nearby speaker, and a damping force
proportional to β. It is a lightly disguised version of
Newton’s second law:

p̈B(t) = −ω2
0pB(t)︸ ︷︷ ︸

restoring
force

+2αβω0pS(t)︸ ︷︷ ︸
driving
force

− 2βṗB(t)︸ ︷︷ ︸
damping
force

. (1)

To solve this, we can use the Fourier transform

F [f(t)] = f̃(ω) =

∫ +∞

−∞
f(t)e−iωtdt, (2)

and its corresponding inverse transform

F−1
[
f̃(ω)

]
= f(t) =

1

2π

∫ +∞

−∞
f̃(ω)e+iωtdω. (3)

If we take the Fourier transform of Eq. ??, we find

−ω2p̃B(ω) = −2iωβp̃B(ω)+2αβω0p̃S(ω)−ω2
0 p̃B(ω). (4)

From this, we can solve for p̃B(ω) as

p̃B(ω) =

(
2αβω0

(ω2
0 − ω2) + 2iβω

)
p̃S(ω). (5)

This has the form of a Green’s function [? ]

p̃B(ω) = G(ω)p̃S(ω) (6)

with

G(ω) =
2αβω0

(ω2
0 − ω2) + 2iβω

. (7)

FIG. 2. Left : Real and imaginary parts of G(ω). Right top:
Magnitude of G(ω). Right bottom: Phase of G(ω). An unreal-
istically large β = ω0/5 has been used for plotting; typically,
β ≪ ω0, making the peaks in G(ω) much narrower.

G(ω) can be plotted via its real and imaginary parts, or
it can be represented [? ] in terms of an amplitude

|G(ω)| = 2αβω0√
(ω2

0 − ω2)2 + 4β2ω2
(8)

and phase

δ(ω) = arctan

(
2βω

ω2
0 − ω2

)
. (9)

such that

G(ω) = |G(ω)|e−iδ(ω). (10)

Both forms are shown in Fig. ??.
Our aim here is to measure G(ω) experimentally. This

is complicated by the fact that we do not have direct
access to pB(t), the pressure contribution from the bottle,
since the signal measured by our microphone will sum the
contributions from the speaker (the “background”) and
the bottle (the “signal”):

pM (t)︸ ︷︷ ︸
microphone

= pS(t)︸ ︷︷ ︸
speaker

+ pB(t)︸ ︷︷ ︸
bottle

. (11)

To extract G(ω), we will therefore need to develop strate-
gies for inferring pB(t).

III. PURE TONES

Wilkinson et al. [? ] already discussed how to mea-
sure G(ω) using pure tones, but we will revisit that prob-
lem in this section with the goal of establishing the basic
physical model of Eq. ??—i.e., our contention that the
signal at the microphone pM (t) is the sum of the speaker
signal pS(t) and the bottle signal pB(t). As we will see
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below, this better matches experimental results than the
normalization procedure of Wilkinson et al.
For pure tones, Eq. ?? gives

PS sin(ωt)︸ ︷︷ ︸
speaker

+PB sin(ωt− δB)︸ ︷︷ ︸
bottle

= PM sin(ωt− δM )︸ ︷︷ ︸
microphone

. (12)

The quantities PS , PB , and PM , in this expression,
are real-valued amplitudes. We will take measurements
twice—once without the bottle below the microphone,
and once with the bottle—to gather enough information
to extract these amplitudes and their relative phases.
First, we play a tone of frequency f (i.e., of angular fre-

quency ω = 2πf) without the bottle, collect data, and fit
the time-series data. The microphone measures a signal

pno(t) = PS sin(ωt+ ϕP,no), (13)

corresponding to the voltage driving the speaker

vno(t) = Vno sin(ωt+ ϕV,no). (14)

where the “no” subscripts refer to the fact that no bottle
is below the microphone. Note that both the microphone
and the speaker voltage have the same time dependence,
set by the frequency of the voltage driving the speaker.
Next, we perform the same experiment with a bottle

under the microphone. The microphone measures a sig-
nal

pyes(t) = PM sin(ωt+ ϕP,yes), (15)

corresponding to the voltage driving the speaker

vyes(t) = Vyes sin(ωt+ ϕV,yes), (16)

where the “yes” subscripts indicate that a bottle is below
the microphone. (In principle vyes(t) and vno(t) could be
the same, but here we do not assume triggered measure-
ments, so ϕV,no and ϕV,yes may differ.)
From these measurements, one can immediately find

the phase shift δM of the microphone signal. If the am-
plitude of the bottle contribution were zero, we would
expect the microphone phase shift δM in Eq. ?? to be
zero as well, so we take the phase shift ϕP,no − ϕV,no

as a δM = 0 shift. ((Signal propagation delay causes
ϕP,no ̸= ϕV,no.) A second measurement with the bottle
allows the shift to be determined from ϕP,yes − ϕV,yes.
The difference between these two measurements, modulo
2π and subtracted from 2π, gives us the phase shift of
the microphone signal, relative to the speaker signal:

δM = 2π −mod
(
(ϕP,yes − ϕV,yes)

− (ϕP,no − ϕV,no), 2π
)
.

(17)

Since PS , PM , and δM are all measured, we can recast
Eq. ?? in its complex form

PSe
iωt + PBe

i(ωt−δB) = PMei(ωt−δM ) (18)

FIG. 3. Measurements obtained from pure tones at different
angular frequencies. Top: Normalized amplitude data PB/PS

and PM/PS , along with a fit to our model (Eq. ??). Bottom:
Measured phase δB (Eq. ??) vs. the fit to our model (Eq. ??,
with the same parameters as for the upper panel).

to find PB as

PB =
√
P 2
S + P 2

M − 2PSPM cos(δM ). (19)

and δB as

δB = arccos((PM cos(δM )− PS)/PB). (20)

We can perform a nonlinear fit of the measured ratios
of PB/PS [? ] to our model prediction

PB

PS
=

2αβω0√
(ω2

0 − ω2)2 + 4β2ω2
. (21)

This fit yields the parameters

α = 3.4± 0.2

β = 10.4± 0.7Hz

ω0 = 1220.9± 0.5Hz

(22)

and the fit vs. data is plotted in Fig. ??. Because the dif-
ferent experiments gave slightly different results for the
same bottle, quoted uncertainties have been broadened
to reflect this variation. For each parameter, the sample
standard deviation for the quoted parameters from each
method has been added in quadrature to the formal fit-
ting uncertainty. This procedure leaves the central values
unchanged but enlarges the error bars.

Such fits usually require one to include initial guesses
for parameters that are nearly correct, so it is worth not-
ing that they can be estimated from the plot alone. α is
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roughly the maximum value of PB/PS , β is roughly the
half-width at half-maximum of the resonance peak, and
ω0 is roughly the frequency where PB/PS is a maximum.
It is also notable, in Fig. ??, that the normalized am-

plitude PM/PS , as considered in Wilkinson et al., cannot
be fit by the driven-damped oscillator model. There is
a clear physical reason for this. While either PM/PS or
PB/PS fits the model fairly well near ω0, at driving fre-
quencies well below ω0, the bottle and speaker contribu-
tions are almost in phase, leading to constructive inter-
ference and larger amplitudes, while at driving frequen-
cies well above ω0, they are almost out of phase, leading
to destructive interference and smaller amplitudes. The
mismatch between PM/PS and the model is also evident
in the tails of Fig. ??, since PM/PS tends toward 1 at
frequencies far from ω0, whereas PB/PS tends toward 0.

IV. CHIRP TONES

Although the beer bottle’s resonance can be character-
ized using pure tones, collecting enough data to produce
Fig. ?? is potentially time-consuming. In this section,
we discuss how to extract G(ω) using tones that sweep
across the resonance frequency of the bottle.
As before, it will be useful to normalize our data to

account for the non-uniform frequency response of the
speaker and microphone. We can use the same setup as
in Fig. ??, but now trigger the microphone measurements
on the time-dependent speaker voltage.
Up to uncontrolled fluctuations, the input sig-

nal should be the same for the two time-dependent
measurements—once with the bottle present, and once
without it. As before, we will use these measurements
to extract G(ω). We present two ways of doing this.
One method, an “incoherent” approach, only employs
the magnitudes of the FFTs; the other, a “coherent” ap-
proach, is also sensitive to phase.
A simple possibility for an audio signal that varies in

frequency and time is the “chirp” function [? ]. The lin-
ear chirp function starts at a frequency f0 and ends at a
frequency f1, interpolating linearly between the two over
the duration T . The sine function with these properties
can be expressed as

x(t) = sin
[
2π
( c
2
t2 + f0t

)]
(23)

where

c =
f1 − f0

T
. (24)

The benefit of this form is that its Fourier transform x̃(ω)
has a fairly flat profile in magnitude (though it oscillates
in phase). The methods discussed below do not explic-
itly depend on the form of input signal, as long as the
Fourier components close to ω0 are large enough to avoid
uncontrolled fluctuations in the measured G(ω).

FIG. 4. Measurements corresponding to a 20.0 s chirp signal
sweeping from 100-300 Hz sent by the speaker. Top: The mi-
crophone signal pM (t) with the bottle underneath it. Bottom:
The microphone signal pS(t) without the bottle below it. For
an ideal speaker, the pS(t) amplitude would be even across
all frequencies.

Fig. ?? shows the measurements for a linear chirp of
uniform amplitude sweeping from 100-300 Hz in 20 s, a
signal which can be easily set up using the “Generate”
menu in Audacity. The top red trace represents pM (t),
the signal measured by the microphone when it has a bot-
tle below it. The bottom blue trace represents pS(t), the
signal measured by the microphone without the bottle
below it—i.e., the signal arriving from the speaker alone.

A few notable things appear in Fig. ??. First, while
the speaker voltage amplitude is effectively uniform, the
shape of the microphone signal without the bottle pS(t)
shows that the speaker’s frequency response is markedly
inhomogeneous. Nonetheless, pM (t) shows a distinct am-
plification around 190 Hz, as we would expect from the
previous section, and its variations track those of pS(t).

A. Incoherent pS(t) and pM (t)

To begin our analysis of incoherent signals, we assume
the framework introduced in Sec. ??, and take the Fourier
transform of Eq. ??

p̃M (ω) = p̃S(ω) + p̃B(ω). (25)

Using Eq. ?? to write pB(ω) as G(ω)p̃S(ω), we find

p̃M (ω) =
(
1 +G(ω)

)
p̃S(ω). (26)



5

We then insert the form of G(ω) from Eq. ?? to obtain

p̃M (ω) =

(
1 +

2αβω0

(ω2
0 − ω2) + 2iβω

)
p̃S(ω). (27)

Since we are able to measure pM (t) and pS(t)—they
are the signals, respectively, from the microphone with
and without a bottle—we are able to obtain p̃M (ω) and
p̃S(ω) via separate FFTs. For this method, we would like
to deal only with the magnitudes of these spectra. We
can do this by multiplying each side of Eq. ?? by its own
complex conjugate, which gives us

|p̃M (ω)|2 =

(
(2αβω0 + ω2

0 − ω2)2 + 4β2ω2

(ω2
0 − ω2)2 + 4β2ω2

)
|p̃S(ω)|2

(28)
This suggests a way forward. From the numerical val-

ues for p̃M (ω) and p̃S(ω), we calculate the ratio of their
squared magnitudes

R(ω) =
|p̃M (ω)|2

|p̃S(ω)|2
(29)

and fit it to the function

R(ω) =
(2αβω0 + ω2

0 − ω2)2 + 4β2ω2

(ω2
0 − ω2)2 + 4β2ω2

. (30)

A FFT has been applied to each of the signals shown
in Fig. ??. p̃M (ω) and p̃S(ω) are plotted in the region
near the resonance frequency in the upper plot of Fig. ??,
and numerical estimates for R(ω) and its nonlinear fit in
the same frequency range are plotted in the lower plot.
To perform a numerical fit, we need to give initial es-

timates for the parameters. One way to do this is to
numerically estimate the values ω1, where R(ω) is max-
imum, and ω2, where R(ω) is minimum. Since there are
three parameters, we will also need one more value, and
can use R1 = R(ω1), the value of R(ω) at its maximum.
Analyzing Eq. ??, we find that:

α ≈
√
R1 − 1

β ≈ ω2
2 − ω2

1

2ω1

√
R1 − 1

ω0 ≈ ω1.

(31)

The spectra and R(ω) ratio generated from the data
shown in Fig. ?? are displayed in Fig. ??. Comparing,
one can see that the spectra amplitudes roughly follow
those of the time-domain signals for the same range of
sweep frequencies. Likewise, in this as with the steady-
state case, at frequencies below the resonance frequency
ω0, the magnitude of p̃M (ω) is greater than p̃S(ω) due
to constructive interference, while above the resonance
frequency ω0, the magnitude of p̃M (ω) is smaller than
p̃S(ω) due to destructive interference.
A fit for each pair of pM (t) and pS(t) data sets yields

a set of parameters. We took five pM (t) and five pS(t)

FIG. 5. Top: Spectra of pS and pM , close to the resonance
frequency. Bottom: The function R(ω), with the frequencies
ω1 and ω2 labeled by vertical dashed lines (ω1 < ω2), and the
value R1 labeled by a horizontal dashed line.

datasets, extracted oscillator parameters for each pair
(i.e., for 5×5 = 25 pairs), and averaged, yielding param-
eter estimates of

α = 3.0± 0.4

β = 11.0± 0.8Hz

ω0 = 1220.4± 0.7Hz.

(32)

The errors have been estimated from the sample standard
deviation of each list of 25 estimates, broadened slightly
as discussed at the end of Sec. ??.

Comparing these parameters with those found using
the pure tones method (Eq. ??), we find that the values
are consistent with one another—unsurprisingly, since
these measurements were all taken in a single sitting.
The parameter α depends sensitively on how far the mi-
crophone is from the bottle. The ω0 and β values increase
along with increases in temperature, but in our experi-
ments the air varied no more than 1 °C between the pure-
tones and sweep-tones data acquisition (T ≈ 21.5 °C).

B. Coherent pS(t) and pM (t)

In the analysis above, we have assumed that G(ω) is
given by the damped oscillator mode. Here, we develop
a method to obtain G(ω) using only the properties of
Fourier transforms [? ].
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We will here make use of the convolution theorem. The
convolution of two functions, f(t) and g(t), is defined as

f ∗ g(t) =
∫ +∞

−∞
f(t− τ)g(t)dτ. (33)

The convolution theorem establishes that a Fourier trans-
form turns a convolution into a product:

F [f ∗ g(t)] = f̃(ω)g̃(ω). (34)

We can use this to recover a form for G(ω). After
measuring pS(t) and pM (t), we can convolve the time-
reversed pS(−t) with pM (t), then apply the convolution
theorem:

F [pS(−t) ∗ pM (t)] = F [pS(−t)]F [pM (t)] (35)

The Fourier transform of a time-reversed signal gives us
the complex conjugate of the usual transform, so

F [pS(−t) ∗ pM (t)] = p̃∗S(ω)p̃M (ω). (36)

If we rewrite p̃M (ω) using Eq. ??, we find

F [pS(−t) ∗ pM (t)] = p̃∗S(ω)p̃S(ω) (1 +G(ω)) . (37)

Dividing by |p̃S(ω)|2 and subtracting 1 yields

G(ω) =
F [pS(−t) ∗ pM (t)]

|p̃S(ω)|2
− 1. (38)

This is straightforward to calculate numerically. To
get pS(−t), we flip the order of the pS(t) data, and
pS(−t) ∗ pM (t) is a numerical convolution of the flipped
pS(t) with pM (t). The numerator of the fractional term
is the result of one FFT, and the denominator is the
squared magnitude of another.

This result is shown in Fig. ??, for the same data dis-
played in Figs. ?? and ??. Only a small portion of the
calculated estimate for G(ω) is shown, as outside the fre-
quency range of the sweep tone the Fourier components
are not large enough to produce stable quotients. Near
the resonance frequency, this gives quite an impressive
match with the model expectations set up by Fig. ??, as
the model fits for this particular data set make clear.

Using the same five pM (t) and five pS(t) datasets as
in the incoherent case, and using the same method for
estimating parameter errors, we find the parameter esti-
mates

α = 3.0± 0.4

β = 11.7± 1.2Hz

ω0 = 1221.1± 1.0Hz.

(39)

Since the same data sets were used for these estimates as
in Eq. ??, it is no surprise that they are consistent.

FIG. 6. G(ω) from the data shown in Fig. ??. Left : Real
and imaginary parts of G(ω). Right top: Magnitude of G(ω).
Right bottom: Phase of G(ω).

V. CONCLUSION

The experiments described above allow a frequency-
domain Green’s function to be extracted from micro-
phone data. The manipulations are designed to give stu-
dents experience with FFTs and numerical convolutions
at the same time as they explore the physics of driven-
damped oscillators. The experiments themselves are very
simple to perform, and the beer bottles can easily be
switched out for other resonators. It is also possible to
use different input signals—e.g., chirps with modulated
amplitude, or even more exotic options. More advanced
projects might investigate how to describe higher-order
harmonics or asymmetric cavities. By allowing students
to investigate new resonators with new signals, many
other adjacent projects should be possible.
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