Beer bottles as acoustical resonators:
a teaching tool for the damped driven
oscillator model
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Review of driven-damped oscillator model
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Three approaches to extracting G(w)

— Steady-state signals

— Incoherent signals (two measurements)
— Coherent signals (two microphones)

Conclusion



A favorite toy

e The harmonic oscillator maps onto many different
physical systems that oscillate
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F.=0
e The harmonic oscillator maps onto many different .
physical systems that oscillate "
e Two “tunable parameters” F
— Block mass m i=——u 1
—~ Spring stiffness k =0
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Engineering some reality

e The obvious next step: add a damping term
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Engineering some reality

e The obvious next step: add a damping term
i+ 2B +wiz =0

e Taylor’s “Classical Mechanics” gives solution as

2 x()

x(t) = Ae P! cos(wyr — 8).

W = \/a)j — B2.

(decay parameter) =

Figure 5.11  Underdamped oscillations can be thought of as sim-
ple harmonic oscillations with an exponentially decreasing amplitude
Ae~P'. The dashed curves are the envelopes, +-Ae 5.



Adding external force
e« One more step: add an external force

i+ 283 +wix = F(t)/m



Adding external force
e« One more step: add an external force

i+ 283 +wix = F(t)/m

e Problem: this can have many different solutions!
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Fourier transform of force and oscillations
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Adding external force
e« One more step: add an external force

i+ 2Bt +wiz = F(t)/m
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e Problem: this can have many different solutions!

Adding external force
e« One more step: add an external force

i+ 283 +wix = F(t)/m
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Green’s functions

e We want to connect solutions
i+ 283 4+ wir = F(t)/m
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e We want to connect solutions
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e One method: we can use a Green'’s function!
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Green’s functions

e We want to connect solutions
i+ 283 4+ wir = F(t)/m

e One method: we can use a Green’s function!
+00
z(t) = G(t—t')F(t")dt'.

J —00

e Fourier transforms turn convolutions into products:
i(w) = G(w)F(w).
. —1/m
Glw) = (W2 — w?) — 2ifw




Green’s function of the DDO




Observations re:
the DDO Green’s funchon

 Amplitude greatest near w,

e G(w) produces position

oscillations in phase with Y —
the force at low frequency ﬂ

e G(w) produces position o
oscillations out of phase
with force at high frequency




Measuring the acousti

cal Green’s

function of a beer bottle
e Pressure oscillations above a beer bottle act like DDOs

e Could we measure their associated Green’s function?
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— Im[G(w)]

1200 1250 1300 1350

="

T T T 0 T T T
1200 1250 1300 1350 1200 1250 1300 1350

w w



Background reading

An undergraduate experiment demonstrating the physics of

metamaterials with acoustic waves and soda cans @
James T. Wilkinson; Christopher B. Whitehouse; Rupert F. Oulton; Sylvain D. Gennaro
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Fig. 2. Experimental apparatus: (1) source (can plus loudspeaker); (2) can
under investigation; (3) receiver (loudspeaker used as microphone); (4) os-
cilloscope; (5) frequency generator; (6) microphone amplifier; (7) source
amplifier.



Helmholtz resonators

e Imagine an oscillating plug of
air in the resonator’s opening

e The force on the air plug
depends on...
— area of the opening
— internal volume of the resonator

e This yields a prediction for we:
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https://en.wikipedia.org/wiki/Helmholtz_resonance



Helmholtz resonators as DDOs

e fven if the beer bottle does not act as an ideal Helmholtz
resonator, the damped driven oscillator should basically apply

e Introduces resonance,
| damping, and coupling
= 1 i parameters

— P 58(t) = — wips(t) + 20Bwops(t) — 28pa(1).

,:." I_ | restoring driving damping
1 force force force




Setup —
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e First, record sound without the —
bottle: : i —

speaker = —
e Next, record sound with the = o |
bottle to find its contribution: \ F =
pu(t) = ps(t) +ps(t). — W*F B
S S e
microphone speaker  bottle =



Experimental signal

e Easy to measure signal amplitude with and without the bottle
e By monitoring the speaker, we can also measure the phase shift
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Normalizing the signal
+ extracting fit parameters

e For pure tones,
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Big improvement over previous fit!
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Chirp signals
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Alternative experimental setup

e Use a chirp signal to extract DDO parameters efficiently

e An approximation: both
mics are driven by the
same background
signal, up to an
unknown time shift




Using the chirp:
Raw signal/response
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e Blue: signal from the mic
without a bottle

e Red: signal from the mic :
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e Green: voltage driving the
passive speaker
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Using the chirp: Normalized signal,
incoherent version
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e The DDO model gives a

straightforward prediction for
the squared ratio of the
magnitudes of the spectra with
and without the bottle present

(2afwq + wg — w?)? + 4B3%,2
(wg _ w?)? 1 4822

R(w) =

e This function can be fit to data

to extract model parameters



Using the chirp: Normalized signal,
coherent version

e Suppose the signals give us
what we want, up to an
undetermined time shift A

pi(t) = pm(t) :
pg(t) :pS(t—I_ ﬁ) -0-2__0 2 | 4 | 6 | 8 | 10

e The spectrum of their (155 0.9% Time (s)
convolution can lead us to
the Green’s function!

Ly = Z [p2(=t) *p1(2))
PO ==""5we
F(w) = > (14 G(w))
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Estimating time shift

e Estimate wy as the max
of | Flw)]

e Extract | F(wo)]

e Use the DDO form of
G(woq) to estimate A:

A = i log F(cwo)
o 1— ?\/|F(wﬂ)|2 —1

F(w) =

F [p2(—t) x pi(t)] |

P2 (w)|?

F(w) =e*% (1+G(w))
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Extracting Green’s function

from coherent measurement

e Using the A ' '
estimate, we
calculate G(w)

Re[G(w)]
Im[G(w)]

abs[G(w)]
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e Gives us both
phase and
magnitude!
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Possible extension

e Asingle damped
oscillator does not
capture higher
harmonics—but

Offset Offset 2

seems plausible as a
next step for
modeling
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Summary

« The damped driven oscillator can be
used to model pressure variations
above a beer bottle

e Contributions of the bottle and the
background signal can be separated by
careful modeling

e The frequency-domain Green’s function
of the bottle matches the DDO Green’s
function quite well




Thanks!

 Emma Foster

— Junior at Centenary who
carried out this experiment

* Centenary Faculty-Student
Summer Research Grant

- Paid for this experiment
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