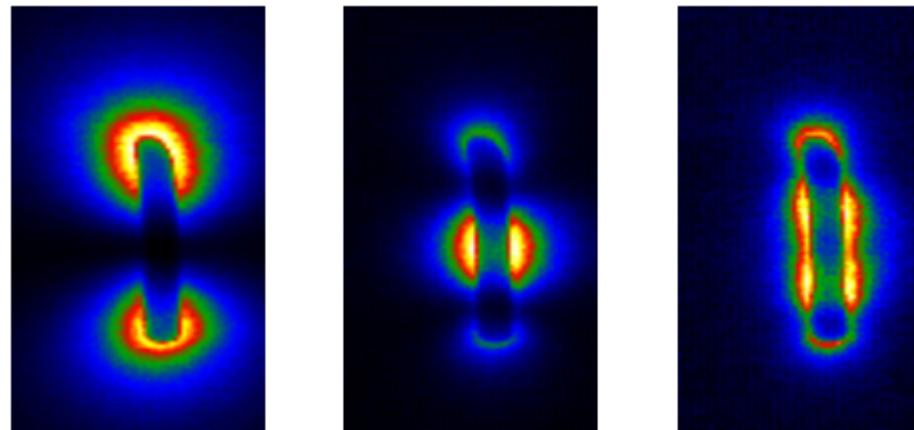
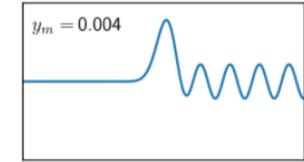
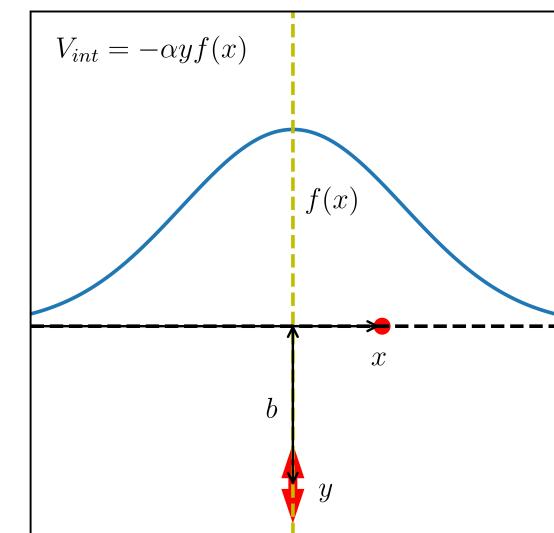


Adventures with Oscillators!

Beer Bottles, Nanorods, and a
Classical/Quantum Comparison

Dr. David Kordahl
January 31, 2025

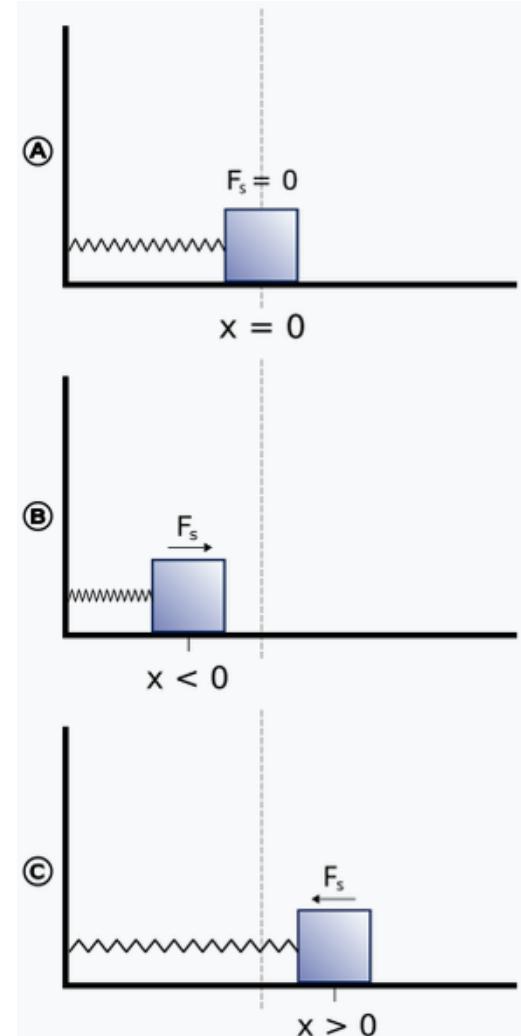


Outline

- **Physical models often apply across contexts**
 - An old favorite: the driven (damped) oscillator
- **Applications of the driven oscillator**
 - Classical: acoustical resonance of a beer bottle
 - Quantum: plasmonic resonance of a nanoparticle
- **Compare/contrast classical + quantum problems**
 - Look at simplified oscillator problem

A favorite toy

- The harmonic oscillator maps onto many different physical systems that oscillate

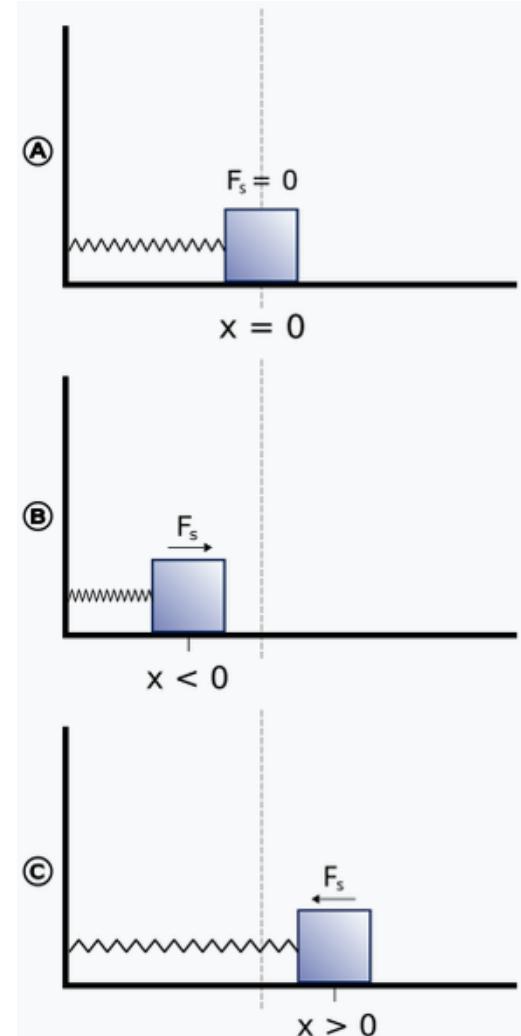


From the Wikipedia article on the HOs

A favorite toy

- The harmonic oscillator maps onto many different physical systems that oscillate
- Two “tunable parameters”
 - Block mass m
 - Spring stiffness k

$$\ddot{x} = -\frac{k}{m}x$$



From the Wikipedia article on the HOs

A favorite toy

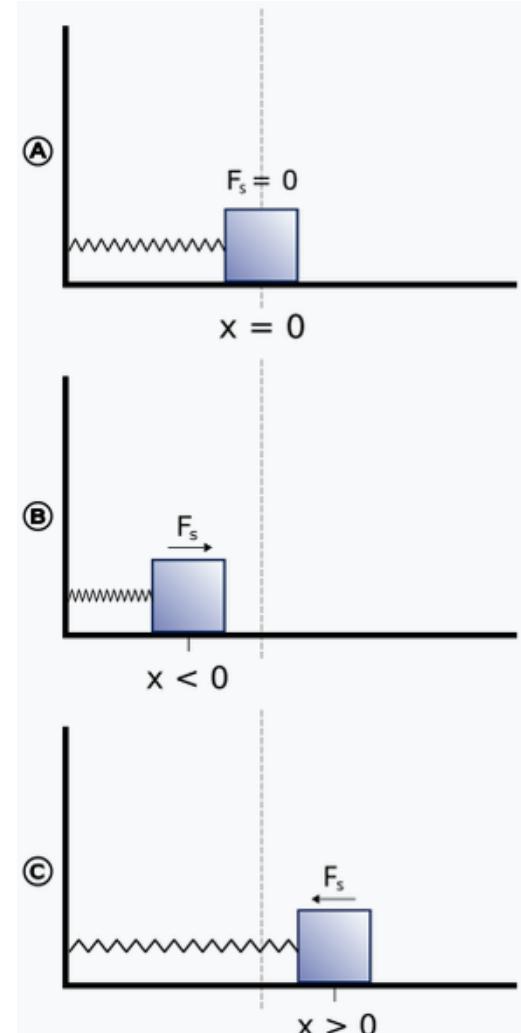
- The harmonic oscillator maps onto many different physical systems that oscillate
- Two “tunable parameters”
 - Block mass m
 - Spring stiffness k
- These variables control oscillation frequency

$$\ddot{x} = -\frac{k}{m}x$$

$$x = x_0 \cos(\omega_0 t - \delta)$$

$$\ddot{x} = \omega_0^2 x$$

$$\rightarrow \omega_0^2 = \frac{k}{m}$$



From the Wikipedia article on the HOs

Engineering some reality

- The obvious next step: **add a damping term**

$$\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = 0$$

Engineering some reality

- The obvious next step: **add a damping term**

$$\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = 0$$

- Taylor's "Classical Mechanics" gives **solution** as

$$x(t) = A e^{-\beta t} \cos(\omega_1 t - \delta).$$

$$\omega_1 = \sqrt{\omega_0^2 - \beta^2}.$$

(decay parameter) = β

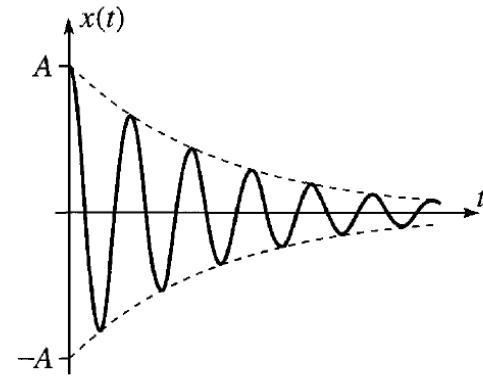


Figure 5.11 Underdamped oscillations can be thought of as simple harmonic oscillations with an exponentially decreasing amplitude $Ae^{-\beta t}$. The dashed curves are the envelopes, $\pm Ae^{-\beta t}$.

Adding external force

- One more step: **add an external force**

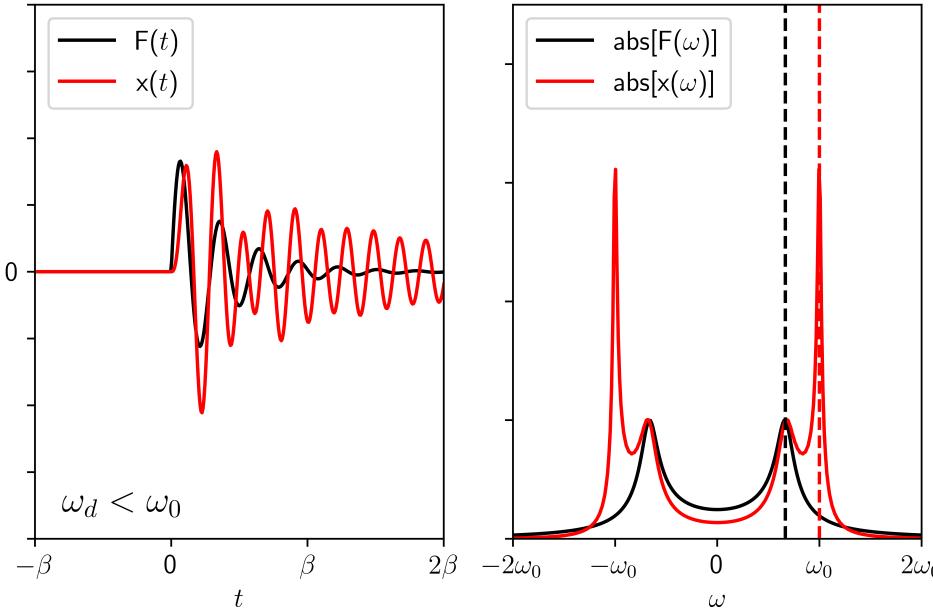
$$\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = F(t)/m$$

Adding external force

- One more step: add an external force

$$\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = F(t)/m$$

- Problem: this can have **many different solutions!**



Fourier transform of force and oscillations

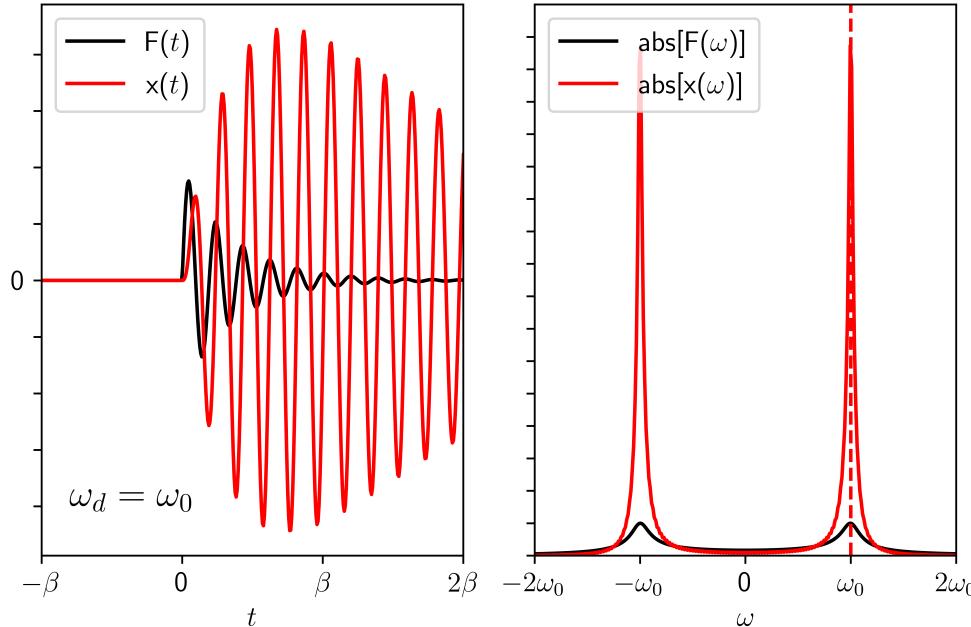
$$\mathcal{F}[f(t)] = \tilde{f}(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$

Adding external force

- One more step: add an external force

$$\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = F(t)/m$$

- Problem: this can have many different solutions!



Fourier transform of force and oscillations

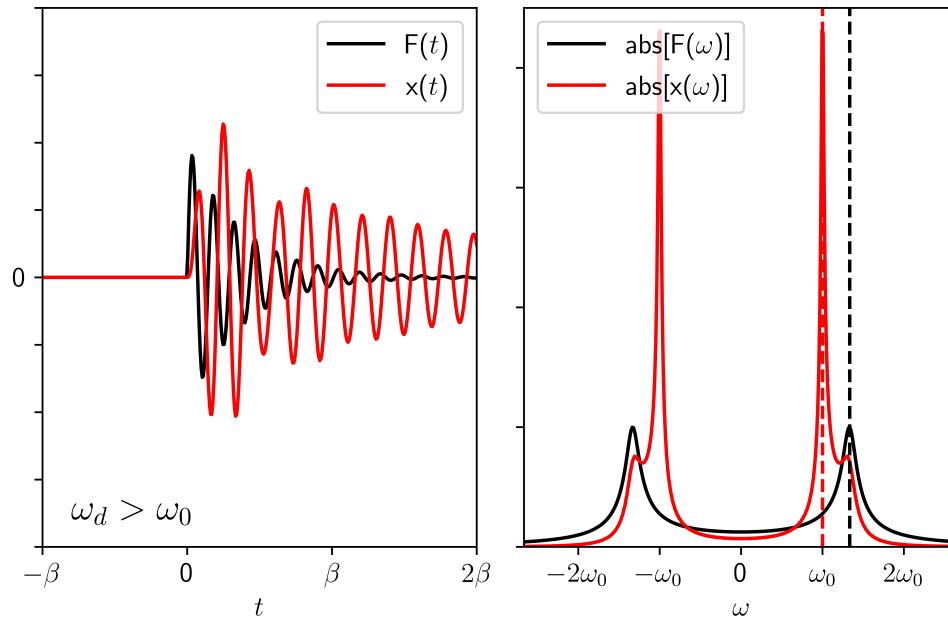
$$\mathcal{F} [f(t)] = \tilde{f}(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$

Adding external force

- One more step: add an **external force**

$$\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = F(t)/m$$

- Problem: this can have **many different solutions!**



Fourier transform of force and oscillations

$$\mathcal{F} [f(t)] = \tilde{f}(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$

Green's functions

- We want to **connect solutions**

$$\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = F(t)/m$$

Green's functions

- We want to connect solutions

$$\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = F(t)/m$$

- One method: we can use a **Green's function!**

$$x(t) = \int_{-\infty}^{+\infty} G(t - t') F(t') dt'.$$

Green's functions

- We want to connect solutions

$$\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = F(t)/m$$

- One method: we can use a Green's function!

$$x(t) = \int_{-\infty}^{+\infty} G(t - t') F(t') dt'.$$

- Fourier transforms turn **convolutions** into **products**:

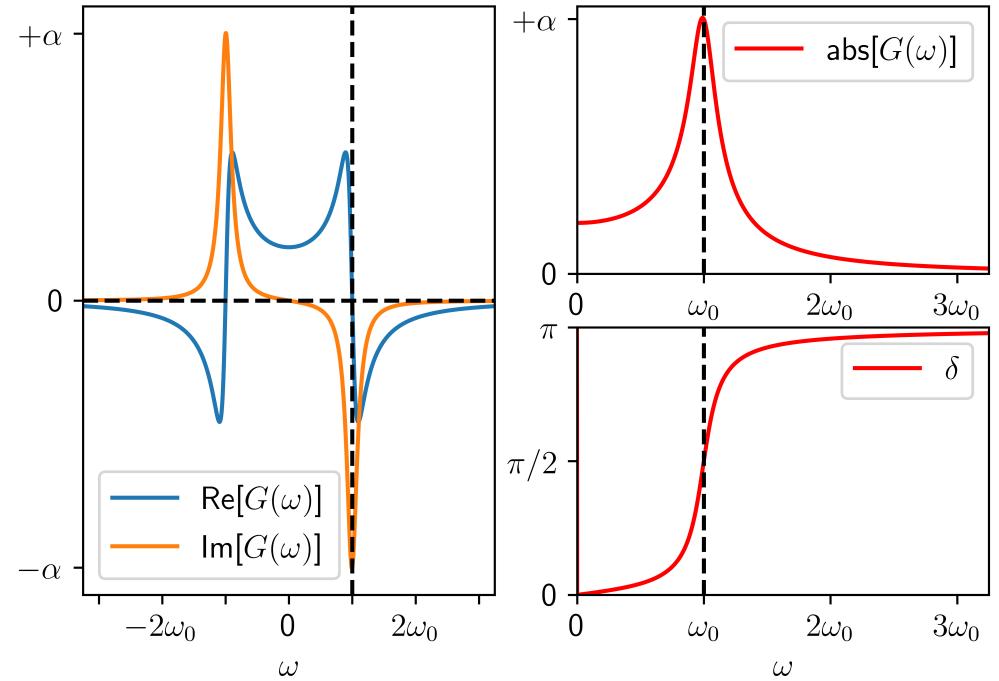
$$\tilde{x}(\omega) = \tilde{G}(\omega) \tilde{F}(\omega).$$

$$\tilde{G}(\omega) = \frac{-1/m}{(\omega^2 - \omega_0^2) - 2i\beta\omega}$$

Green's function of the DDO

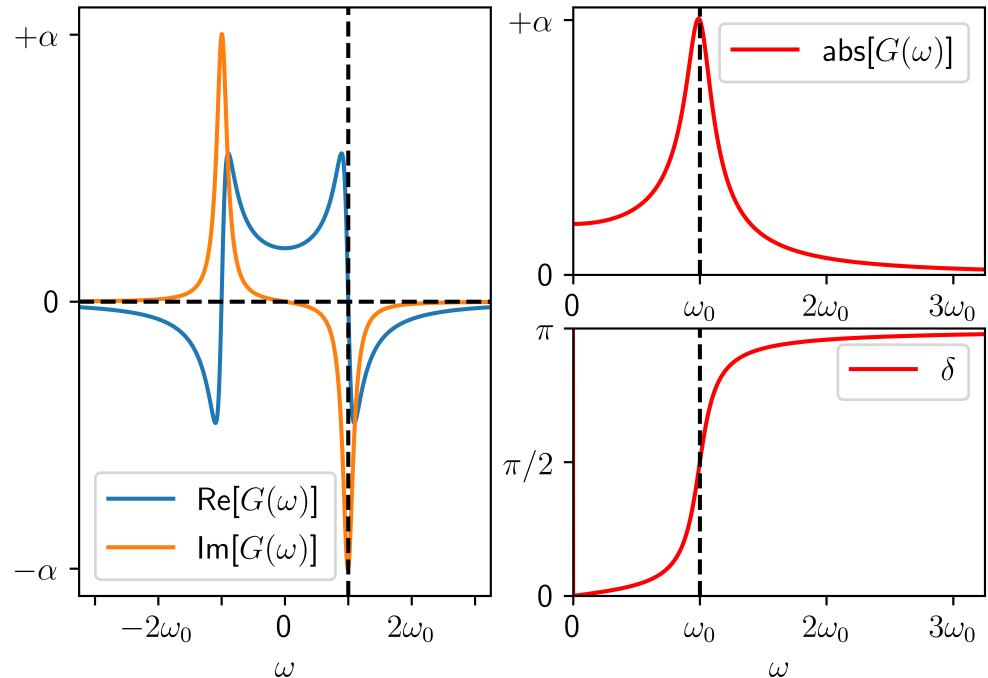
$$\tilde{x}(\omega) = \tilde{G}(\omega) \tilde{F}(\omega).$$

$$\tilde{G}(\omega) = \frac{-1/m}{(\omega^2 - \omega_0^2) - 2i\beta\omega}$$



Observations re: the DDO Green's function

- Amplitude greatest near ω_0
- $G(\omega)$ produces position oscillations *in phase* with the force at low frequency
- $G(\omega)$ produces position oscillations *out of phase* with force at high frequency



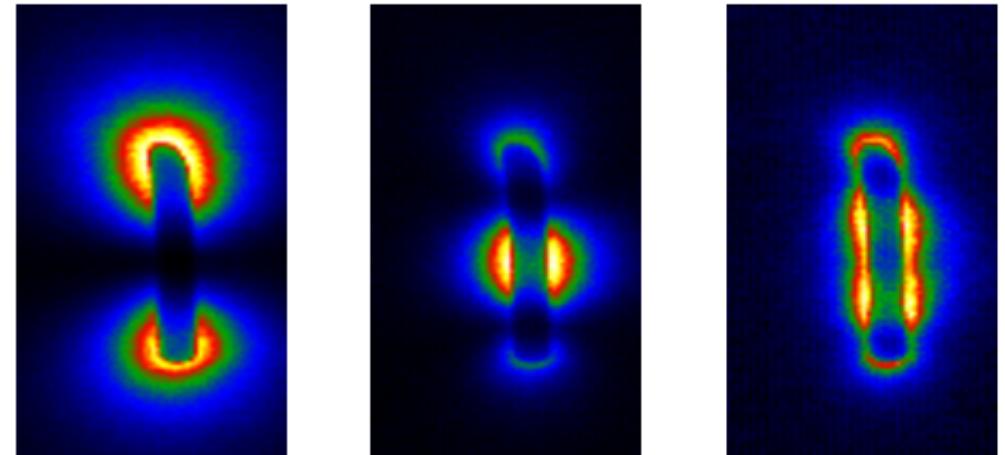
$$\tilde{x}(\omega) = \tilde{G}(\omega) \tilde{F}(\omega).$$
$$\tilde{G}(\omega) = \frac{-1/m}{(\omega^2 - \omega_0^2) - 2i\beta\omega}$$

Models across contexts

- The driven (damped) oscillator can help us understand phenomena that span from classical to quantum

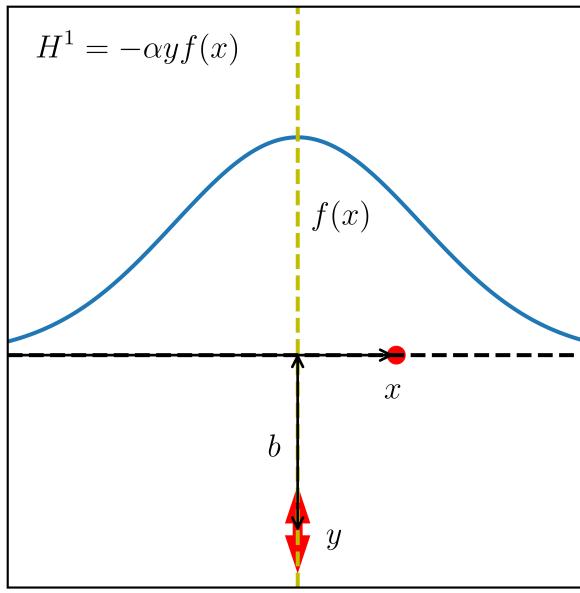
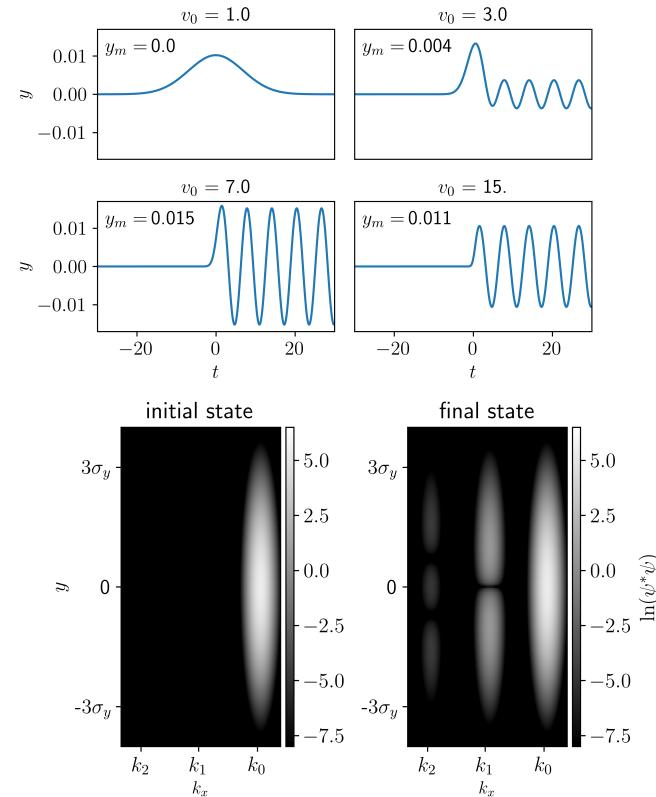
Classical:
beer bottle
acoustics

Quantum: nanorod plamons



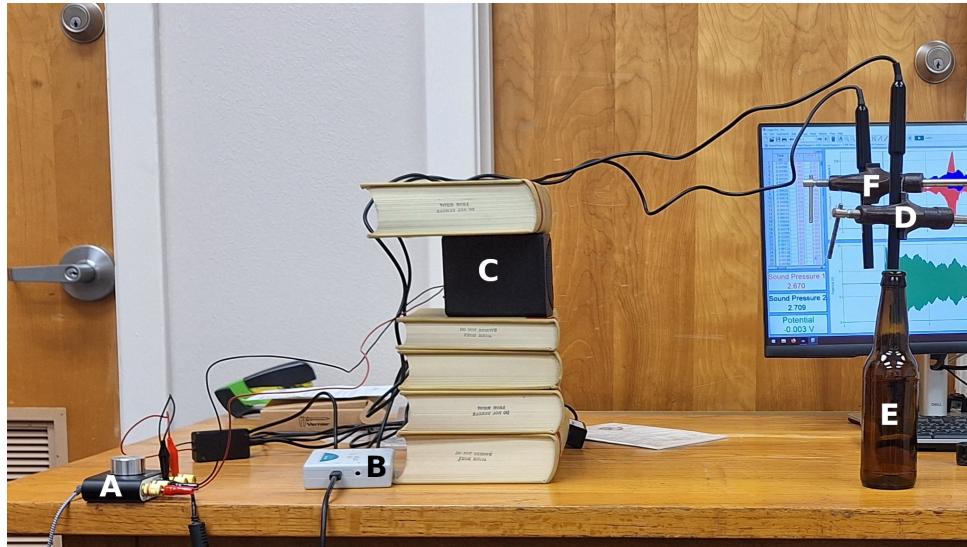
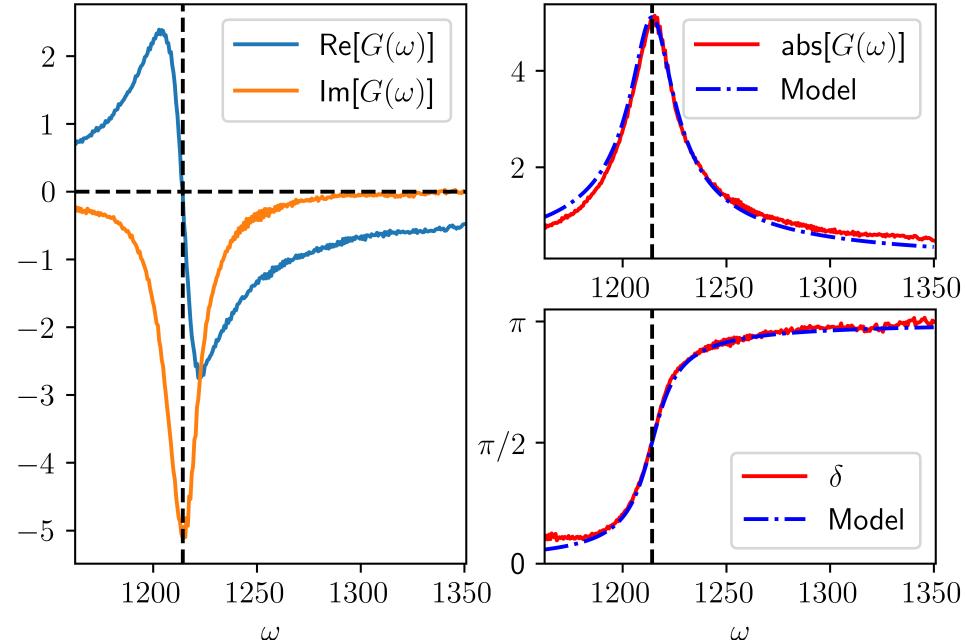
Abstraction preview...

- I'll end the talk with a simple toy model, contrasting classical and quantum approaches



Project 1: Measuring the acoustical Green's function of a beer bottle

- Pressure oscillations above a beer bottle act like DDOs
- Could we **measure** their associated **Green's function**?



Background reading

An undergraduate experiment demonstrating the physics of metamaterials with acoustic waves and soda cans

James T. Wilkinson; Christopher B. Whitehouse; Rupert F. Oulton; Sylvain D. Gennaro

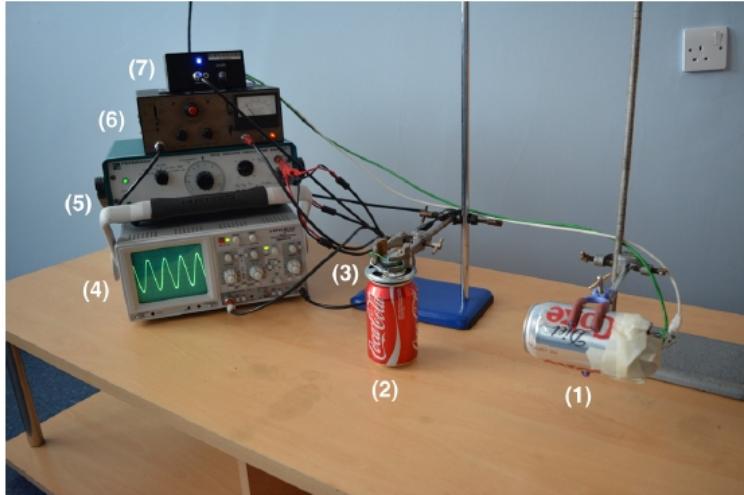
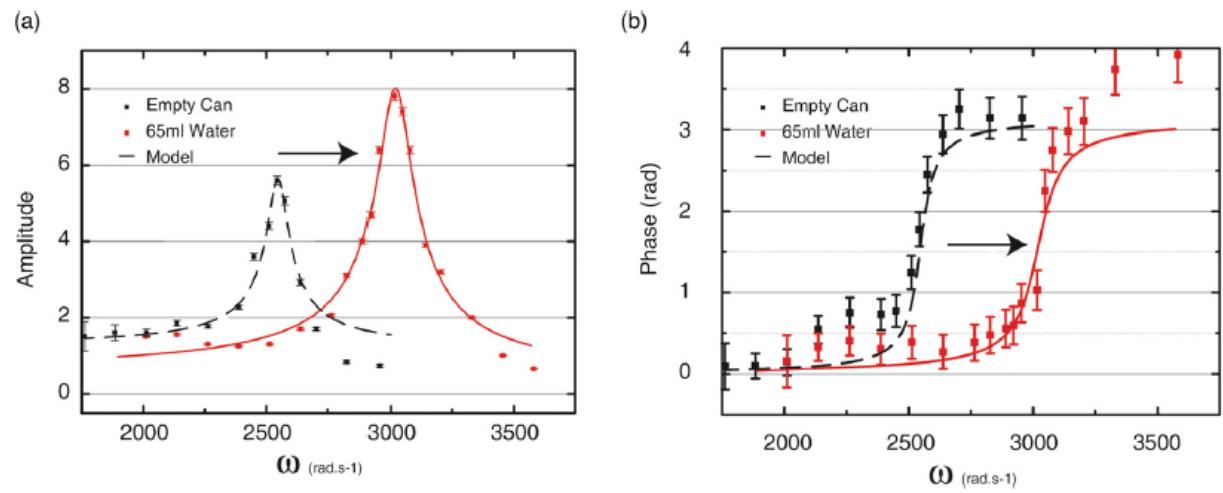


Fig. 2. Experimental apparatus: (1) source (can plus loudspeaker); (2) can under investigation; (3) receiver (loudspeaker used as microphone); (4) oscilloscope; (5) frequency generator; (6) microphone amplifier; (7) source amplifier.



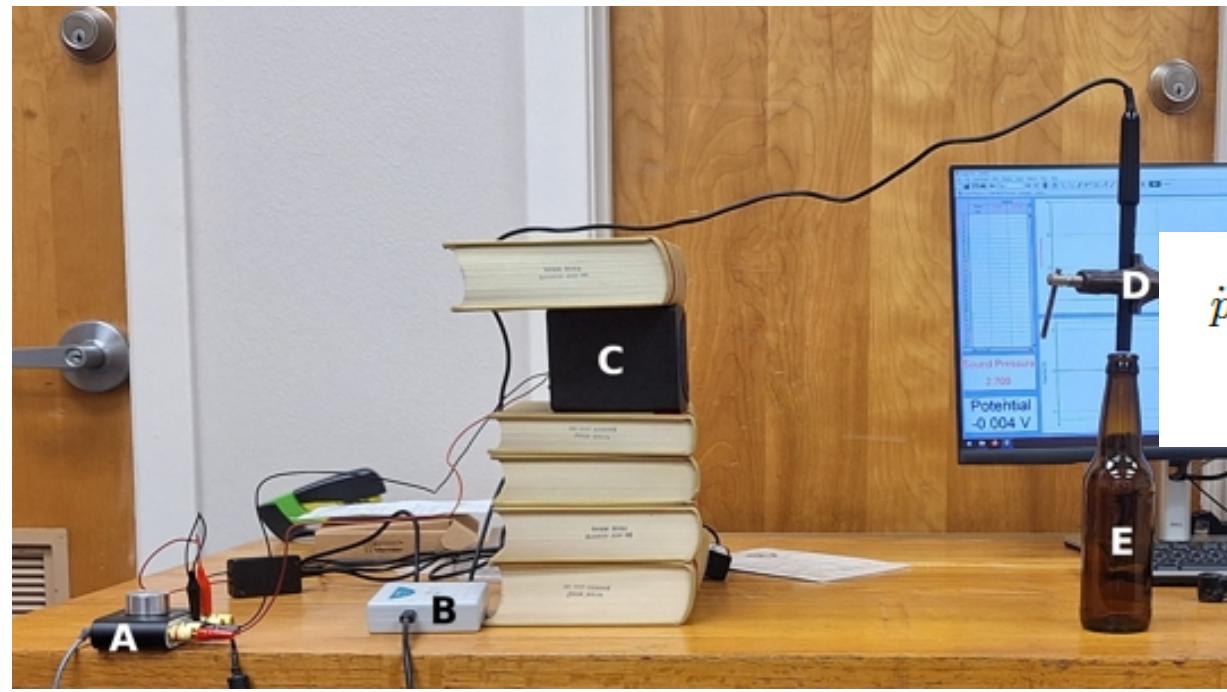
Helmholtz resonators

- Imagine an **oscillating plug of air** in the resonator's opening
- The **force** on the air plug depends on...
 - **area** of the opening
 - internal **volume** of the resonator
- This yields a prediction for ω_0 :

$$\omega_0^2 \approx \frac{\gamma P_A A^2}{m V_0}.$$

Helmholtz resonators as DDOs

- Even if the beer bottle does not act as an ideal Helmholtz resonator, the damped driven oscillator should basically apply



- Introduces resonance, damping, and coupling parameters

$$\ddot{p}_B(t) = -\underbrace{\omega_0^2 p_B(t)}_{\text{restoring force}} + \underbrace{2\alpha\beta\omega_0 p_S(t)}_{\text{driving force}} - \underbrace{2\beta\dot{p}_B(t)}_{\text{damping force}}.$$

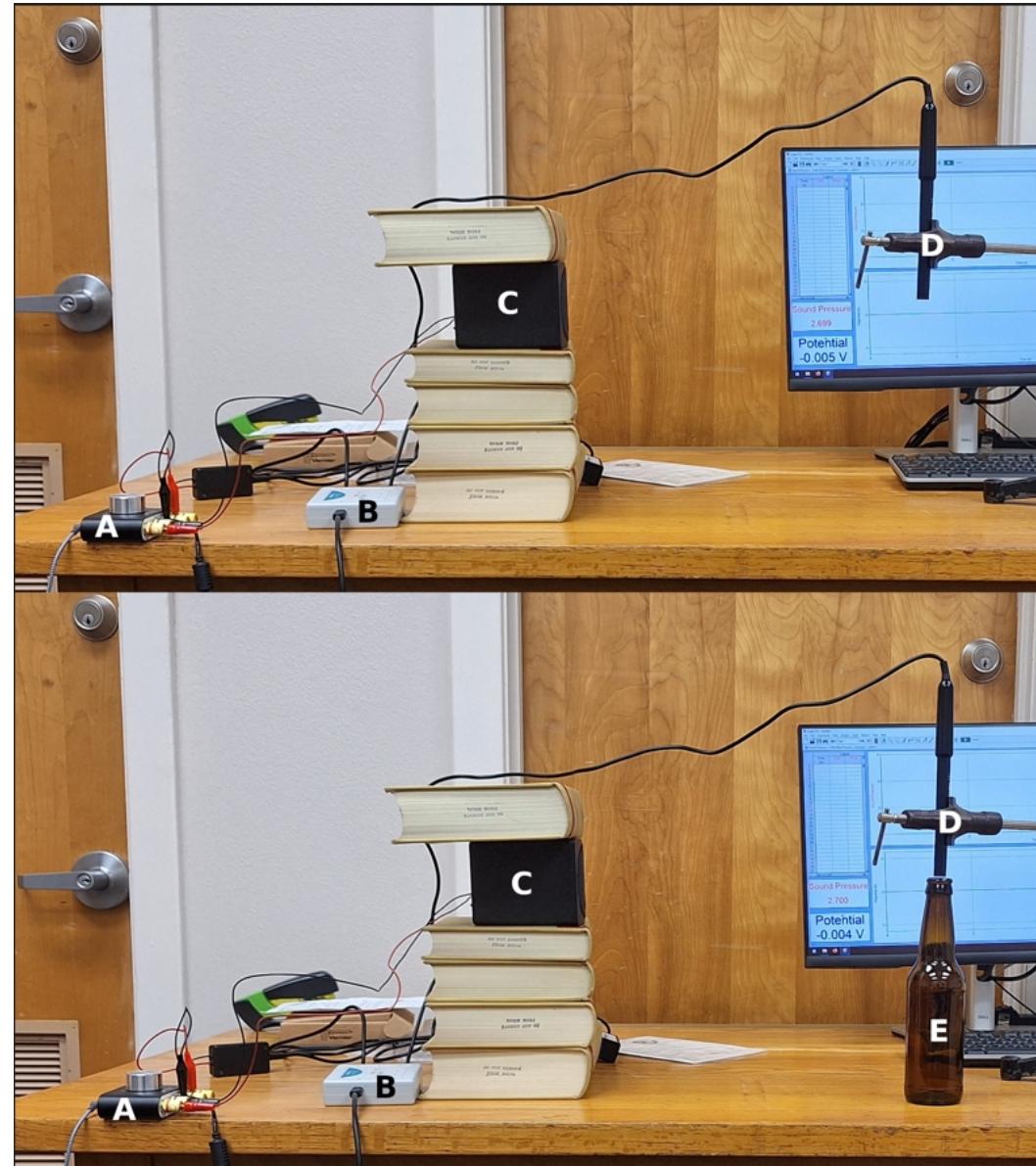
Setup

- First, record sound *without* the bottle:

$$\underbrace{p_S(t)}_{\text{speaker}}$$

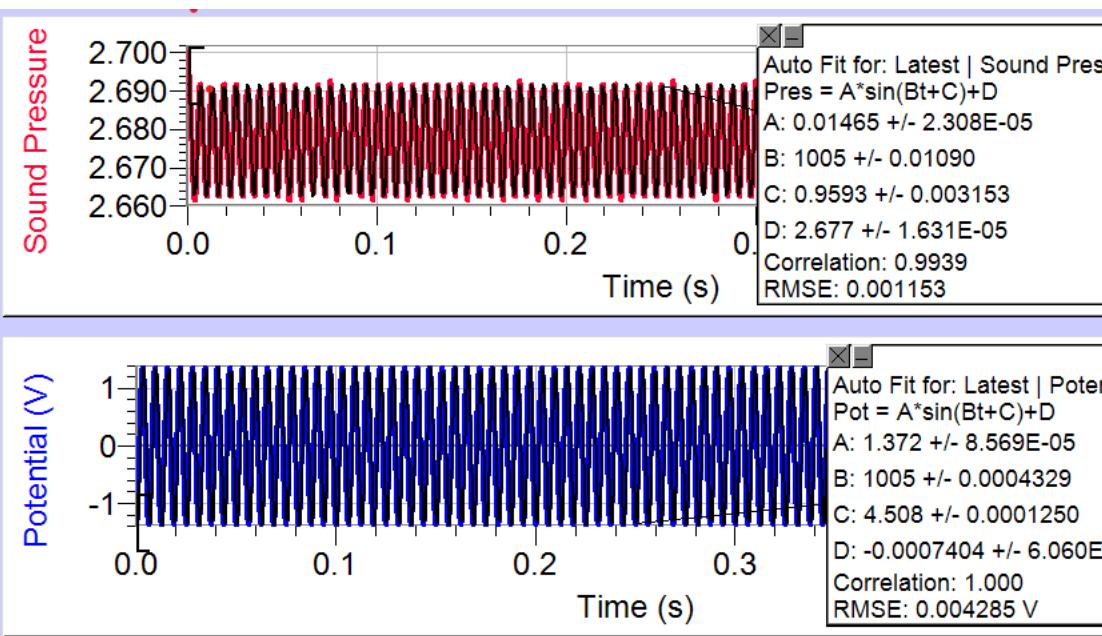
- Next, record sound *with* the bottle to find its contribution:

$$\underbrace{p_M(t)}_{\text{microphone}} = \underbrace{p_S(t)}_{\text{speaker}} + \underbrace{p_B(t)}_{\text{bottle}}.$$



Experimental signal

- Easy to measure signal amplitude with and without the bottle
- By monitoring the speaker, we can also measure the phase shift



Normalizing the signal + extracting fit parameters

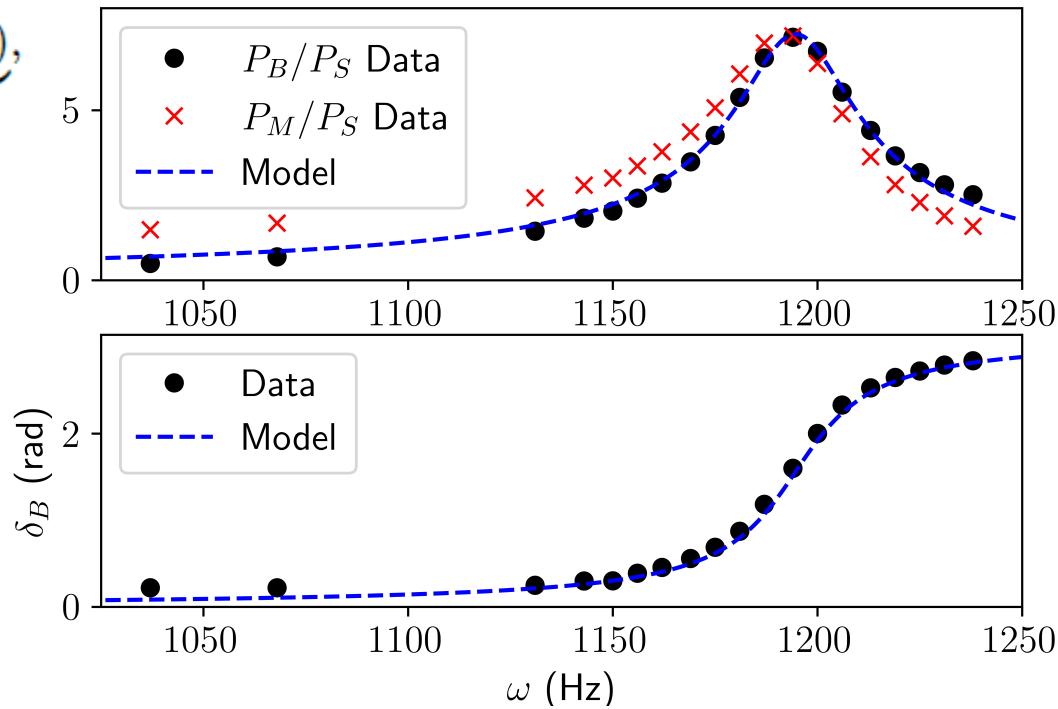
- For pure tones,

$$\underbrace{P_S \cos(\omega t)}_{\text{speaker}} + \underbrace{P_B \cos(\omega t - \delta_B)}_{\text{bottle}} = \underbrace{P_M \cos(\omega t - \delta_M)}_{\text{microphone}},$$

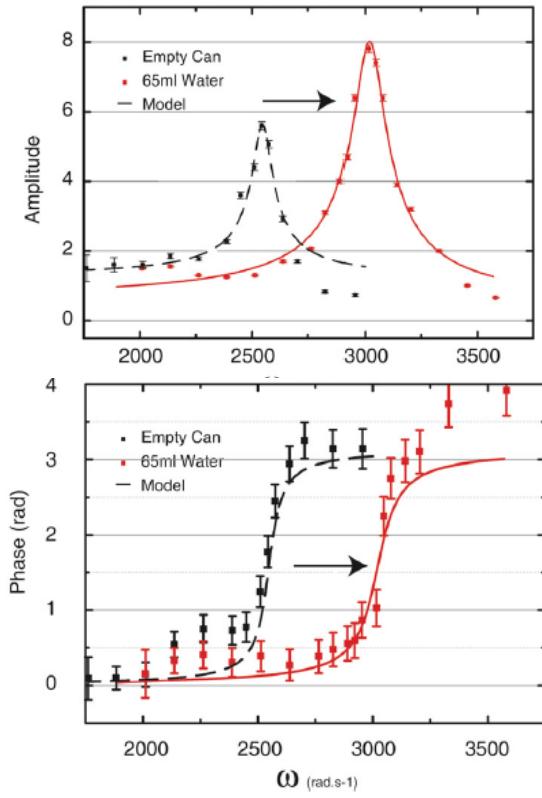
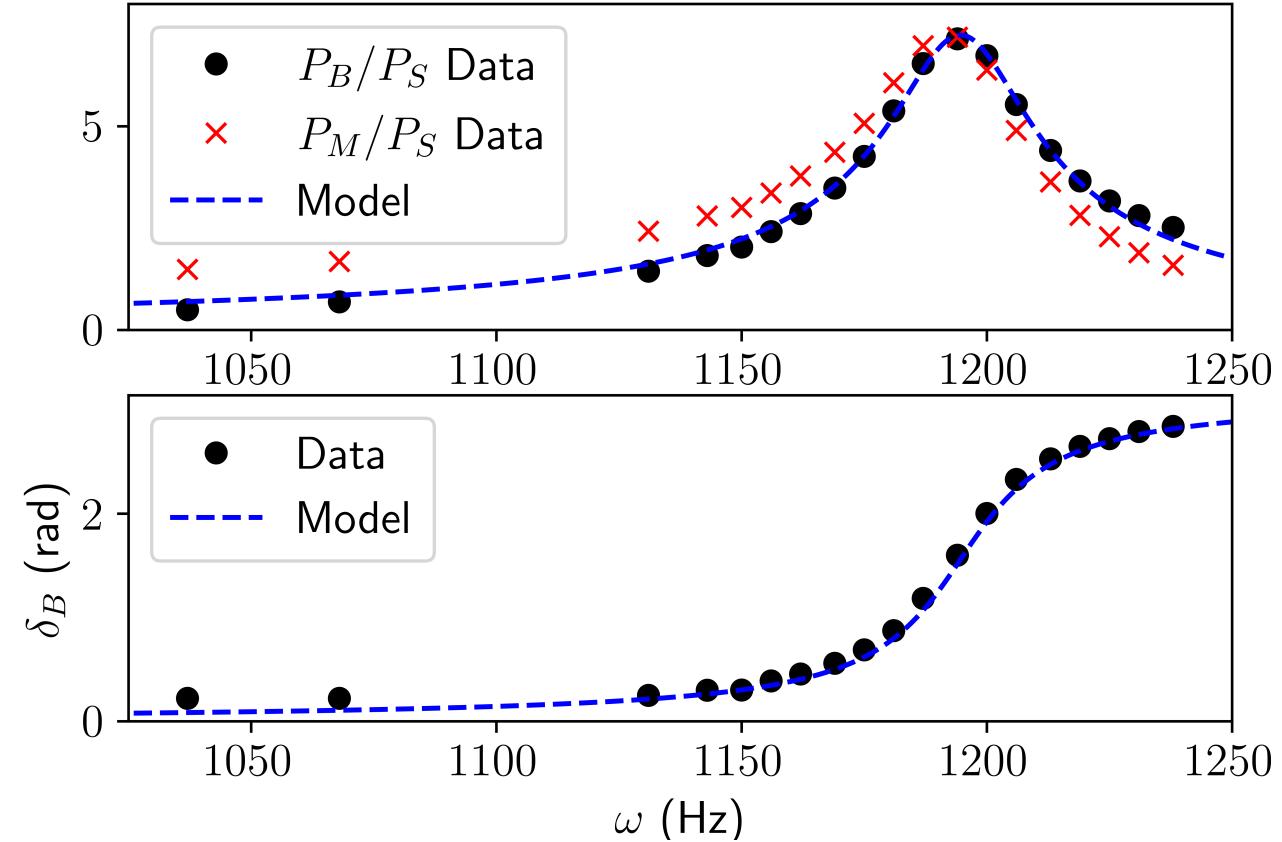
$$P_S e^{i\omega t} + P_B e^{i(\omega t - \delta_B)} = P_M e^{i(\omega t - \delta_M)}$$

- Normalized amplitudes and phase shifts are fit well by DDO model

$$P_B = \sqrt{P_S^2 + P_M^2 - 2P_S P_M \cos(\delta_M)}$$



Big improvement over previous fit!

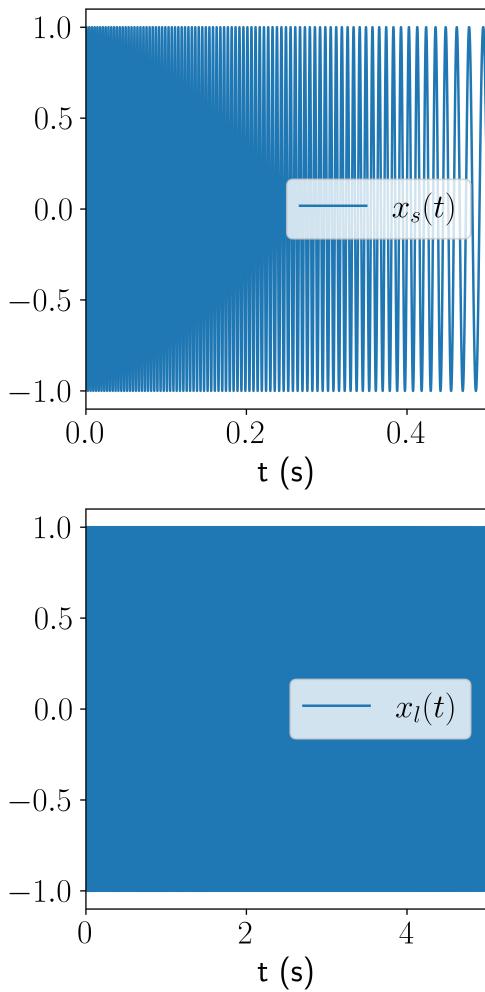
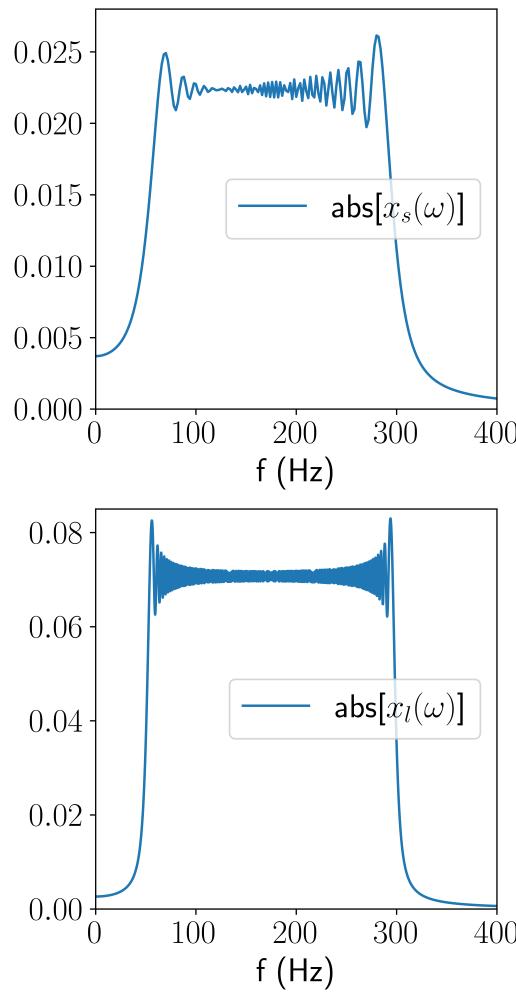


Chirp signals

- Chirp signals are easy to generate using Audacity

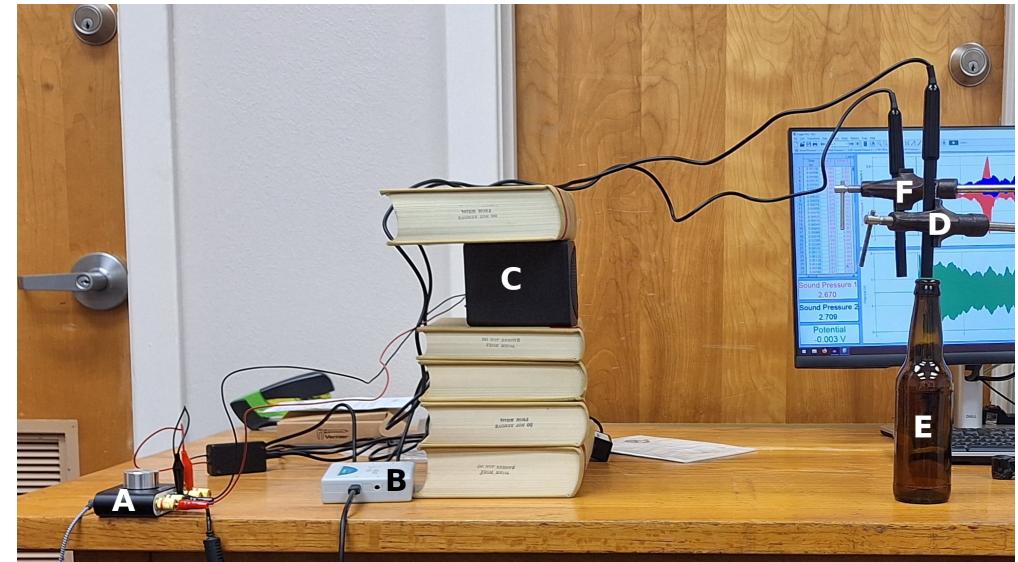
$$x(t) = \sin \left[2\pi \left(\frac{c}{2}t^2 + f_0 t \right) \right]$$
$$c = \frac{f_1 - f_0}{T}.$$

- Chirp spectrum ranges from f_0 to f_1 with a flattish amplitude



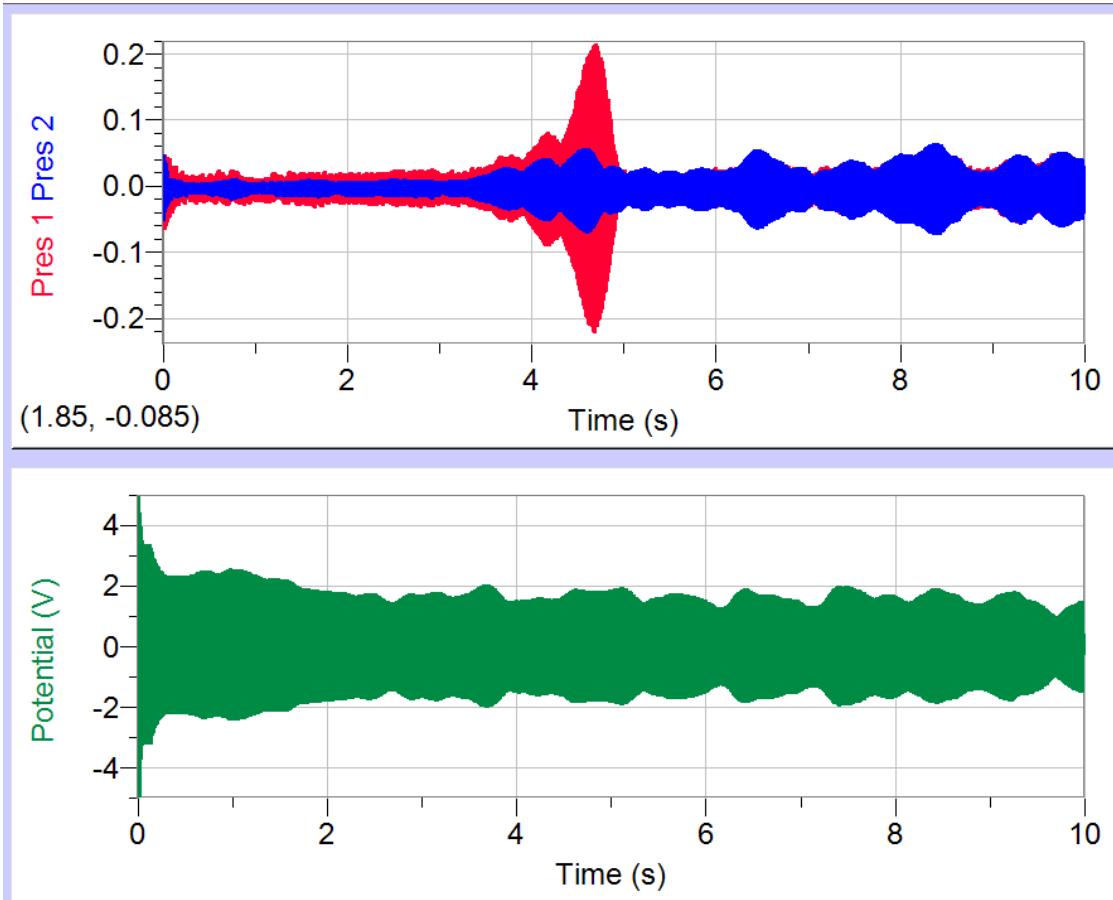
Alternative experimental setup

- Use a chirp signal to extract DDO parameters efficiently
- An approximation: **both mics** are driven by the **same background signal**, up to an unknown time shift



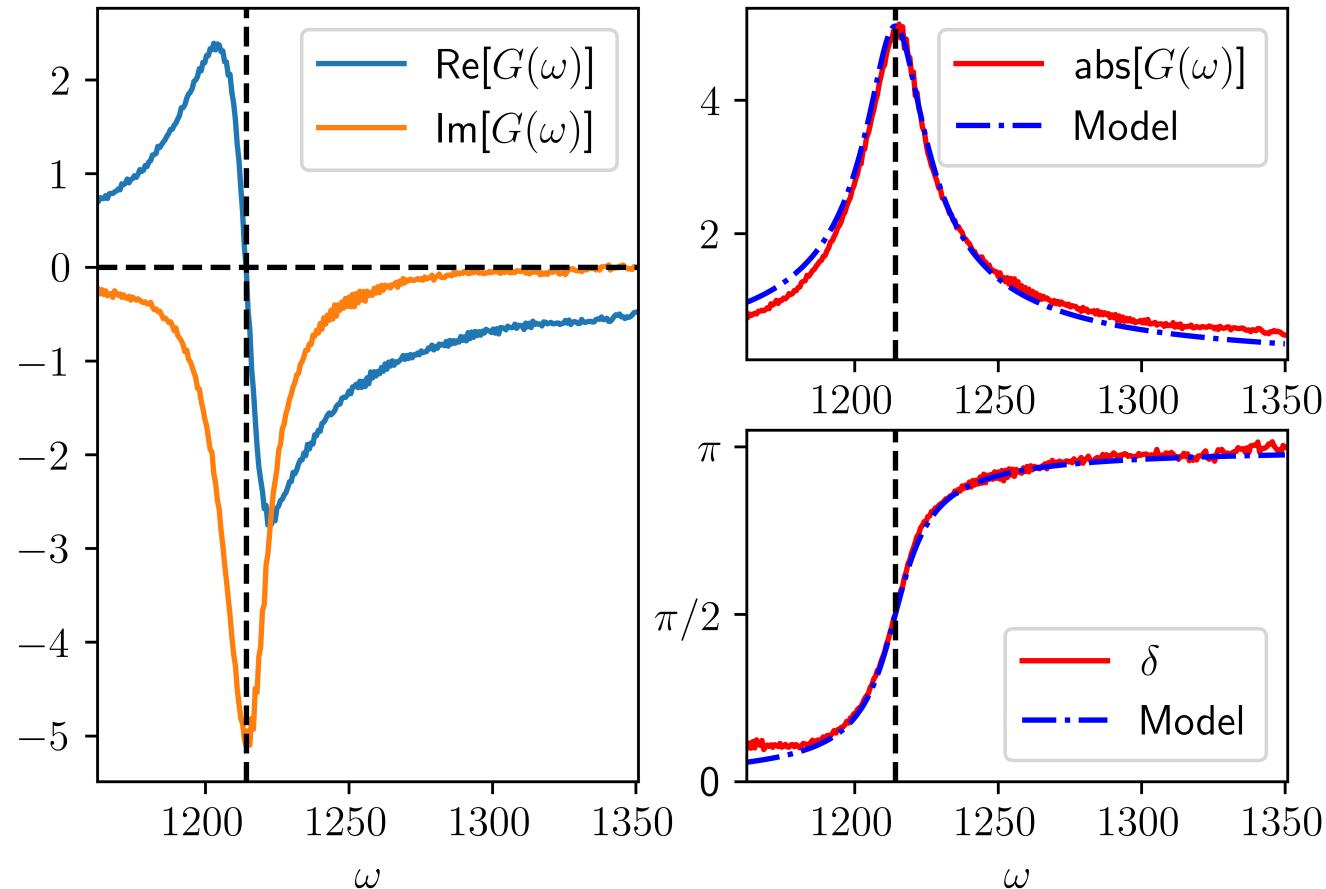
Using the chirp: Raw signal/response

- Blue: signal from the mic without a bottle
- Red: signal from the mic with a bottle
- Green: voltage driving the passive speaker



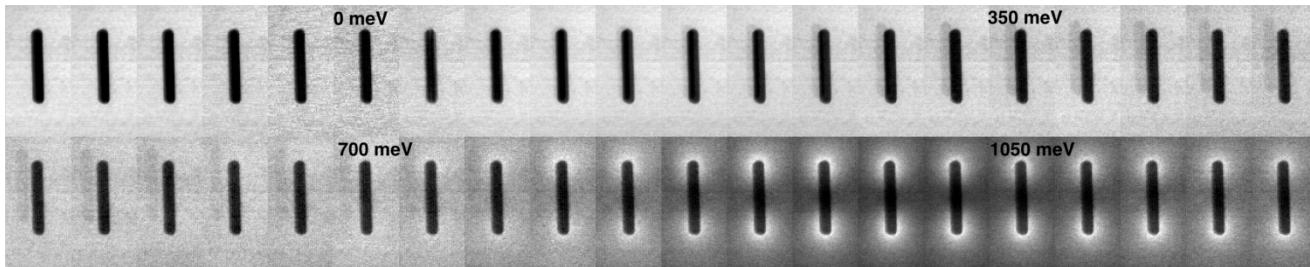
Extracting Green's function from coherent measurement

- The details of finding $G(\omega)$ lie in the details of the Fourier methods
- Gives us both **phase** and **magnitude**!



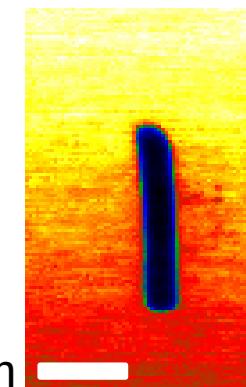
Project 2: Plasmons in nanorods

- How can **resonances** be explored **in mesoscopic systems**?



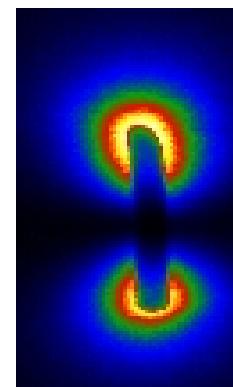
Spectrum imaging of Au nanorod (60 kV, 100 msec, 5 meV/ch)

Mapping of surface plasmon (SP) modes in gold nano-antennae

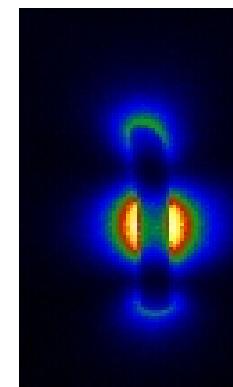


20 nm

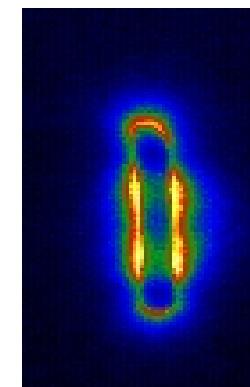
Zero loss



SP mode 1



SP mode 2

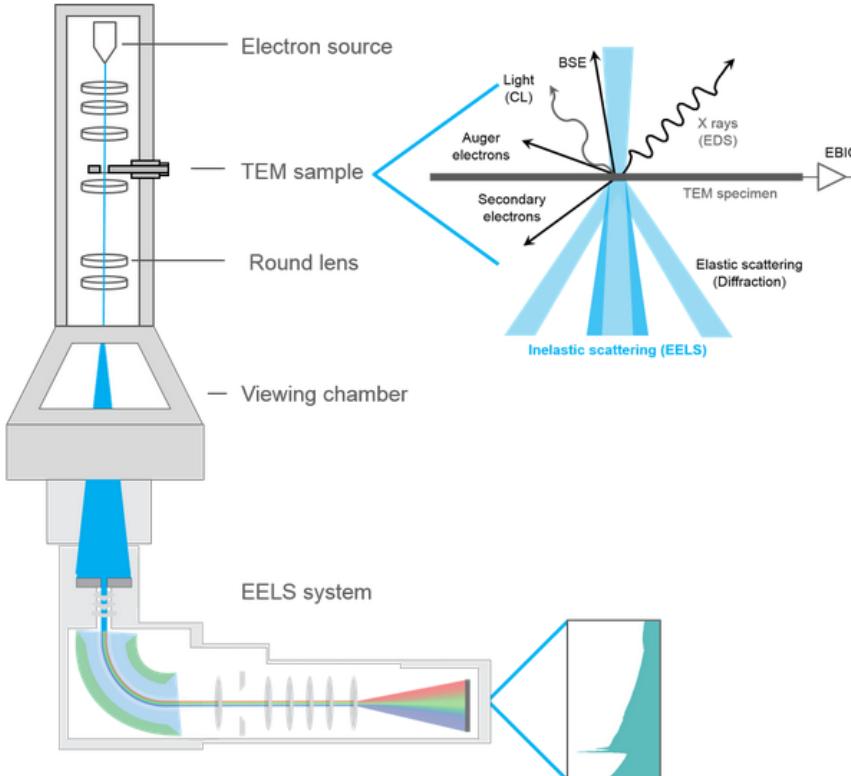


SP mode 3

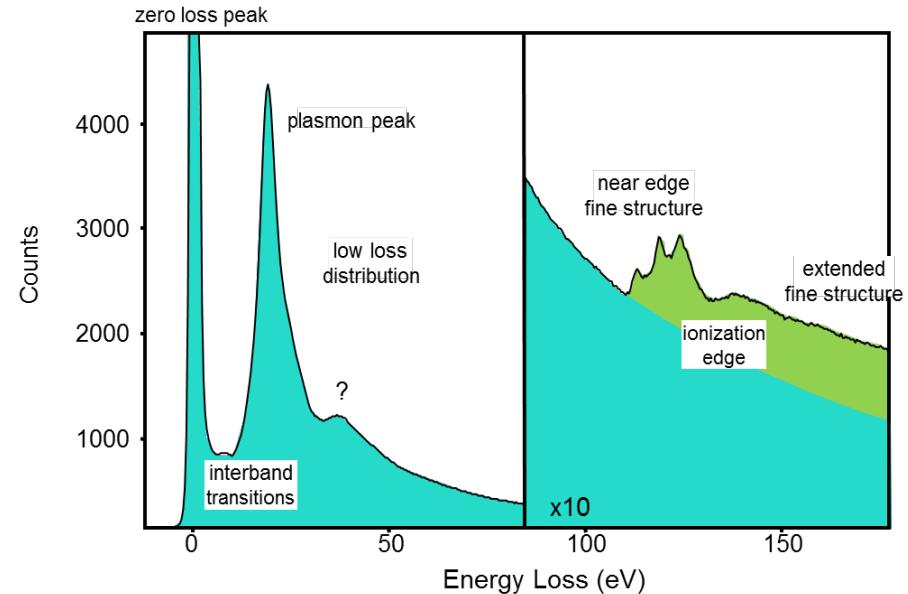
Images are courtesy of Christian Dwyer

Quantum experimental setup: Intro to STEM-EELS

- STEM = Scanning Transmission Electron Microscope



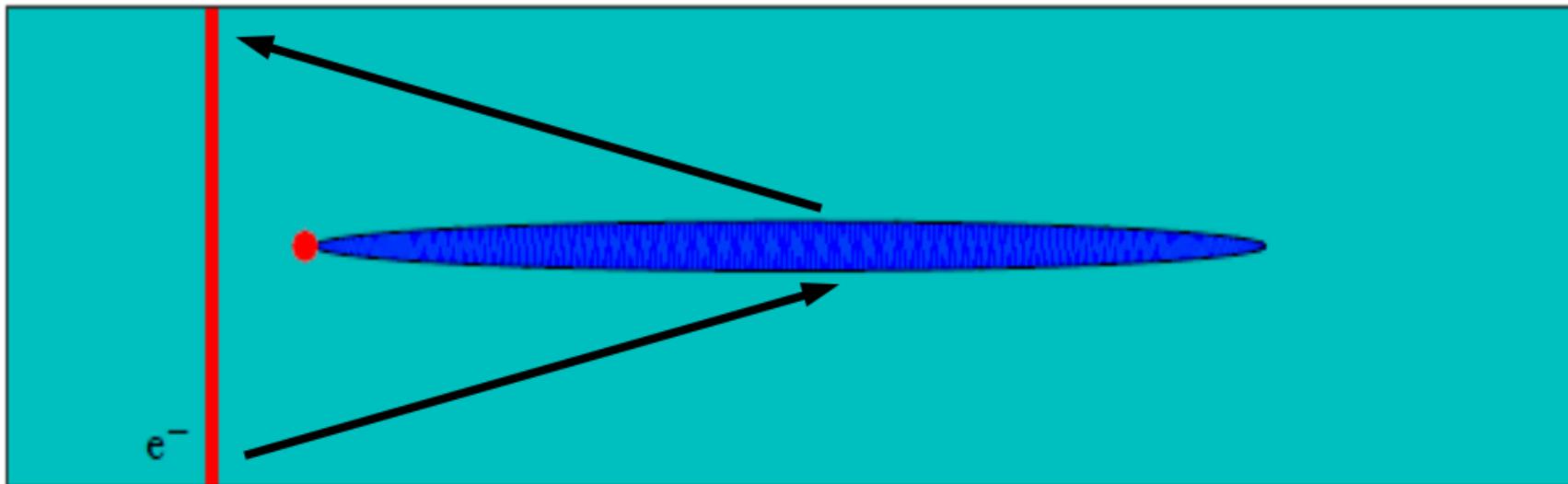
<https://eels.info/about/overview>



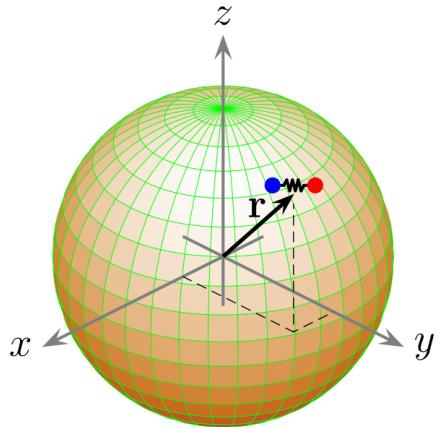
- EELS = Electron Energy-Loss Spectroscopy

Understanding the Physics

- The nanorod screens the beam's electric field, and hence contributes to the total electric field
- The nanorod's electric field contribution **does work** on the electron, causing the electron to slow

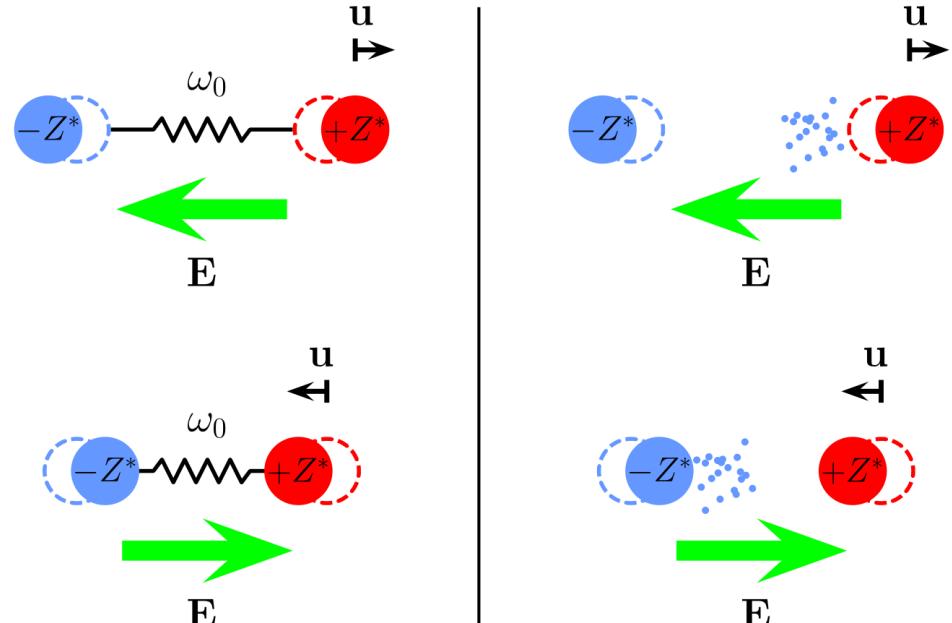


Born-Huang theory for ionic particles



$$Z_0^* \mathbf{E}^{\text{in}} = \ddot{\mathbf{u}} + 2\eta \dot{\mathbf{u}} + \omega_0^2 \mathbf{u},$$

$$\mathbf{P} = Z_0^* \mathbf{u} + \frac{\epsilon_\infty - 1}{4\pi} \mathbf{E}^{\text{in}}.$$



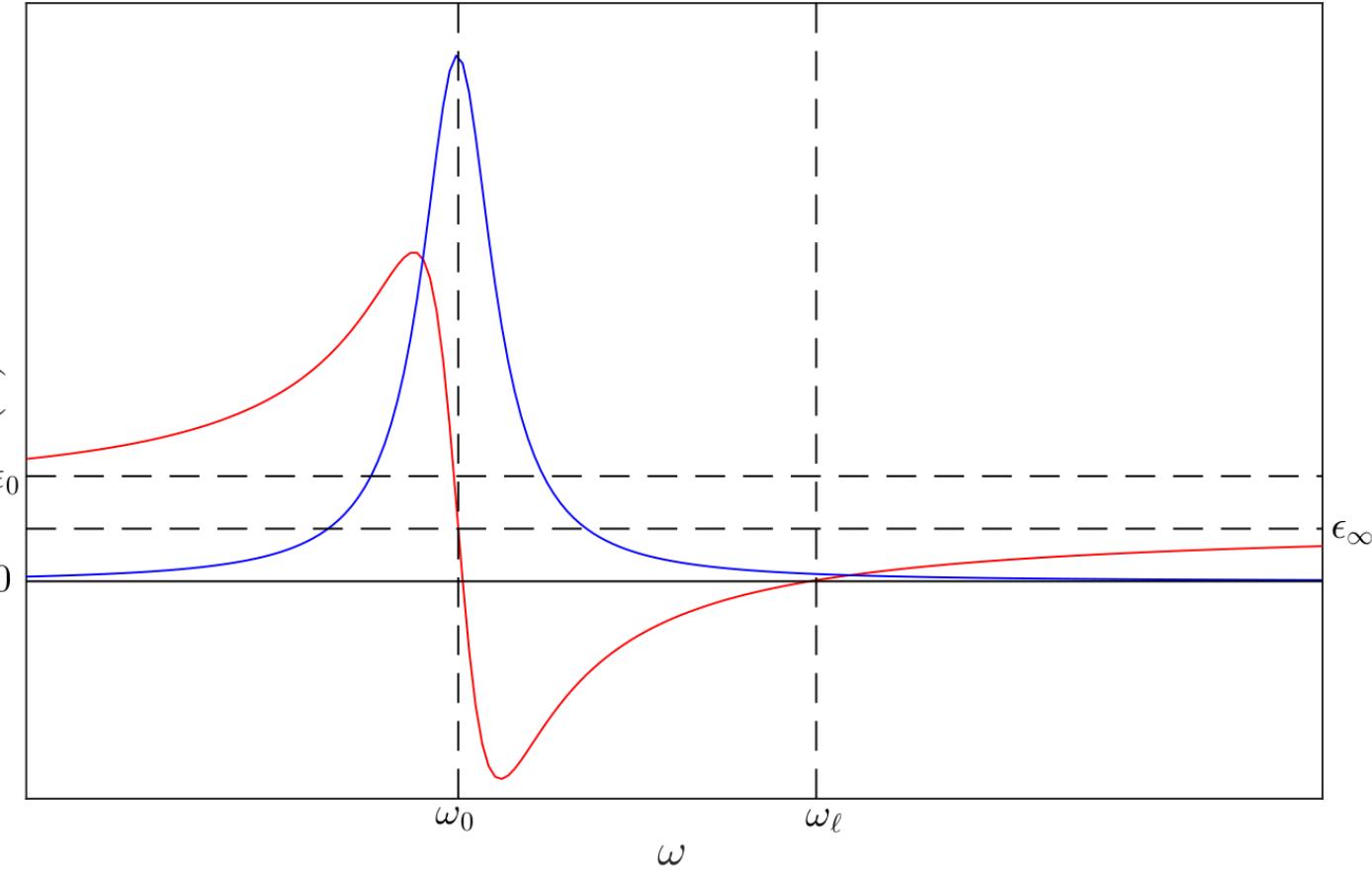
(Image by
Christian Dwyer)

Born-Huang dielectric function

- Dielectric function $\epsilon(\omega)$ connects input E-fields to output E-fields

$$\nabla \cdot \mathbf{D} = \nabla \cdot \epsilon \mathbf{E} = \nabla \cdot (\mathbf{E} + 4\pi \mathbf{P}) = 0$$

$$\epsilon(\omega) = \epsilon_{\infty} \frac{\omega(\omega + 2i\eta) - \omega_{\ell}^2}{\omega(\omega + 2i\eta) - \omega_0^2}$$



Harmonic functions, harmonic frequencies

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0.$$

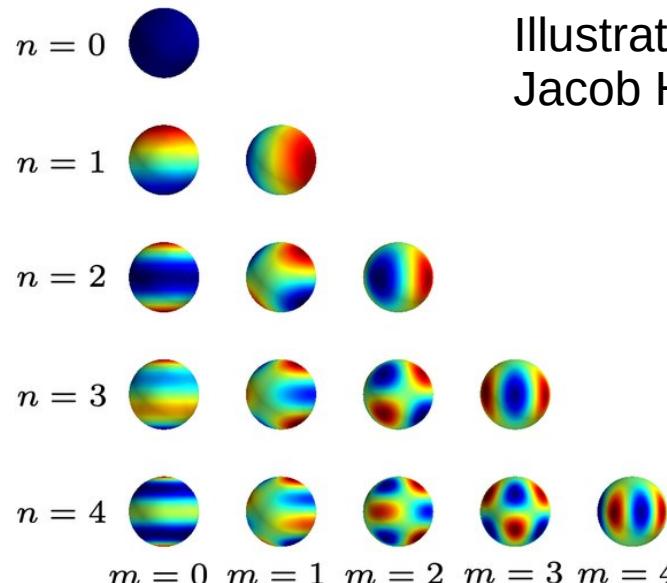
- Introduce harmonic functions for a particular geometry

$$\phi_h^{\text{in}} = \phi_h^{\text{out}}|_{\text{surface}}$$

Example geometry: Sphere

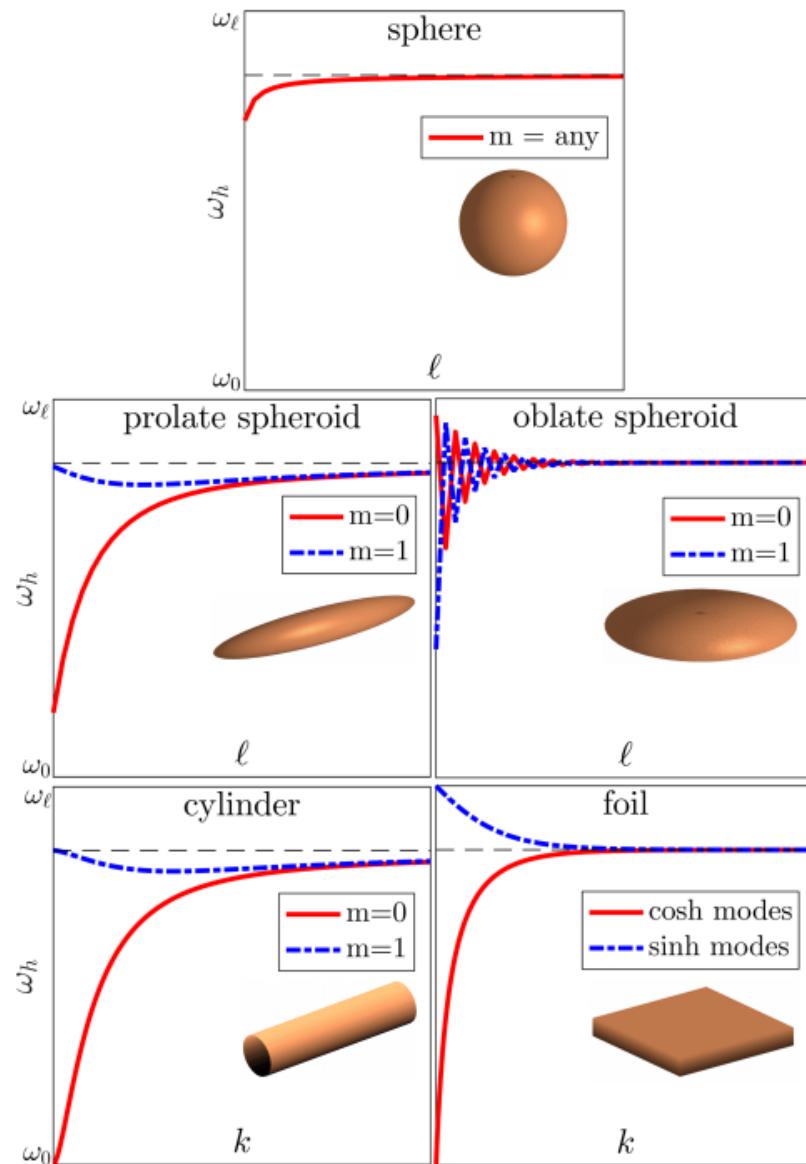
$$\phi_{\ell m}^{\text{in}} \propto (r/a)^\ell P_\ell^m(\cos \vartheta) \exp(im\varphi)$$

$$\phi_{\ell m}^{\text{out}} \propto (a/r)^{\ell+1} P_\ell^m(\cos \vartheta) \exp(im\varphi)$$



Harmonic Frequencies

- To find the harmonic frequencies...
 - 1. Scale harmonic functions
 - 2. Find mode dielectric values
 - 3. Find mode frequencies



Harmonic Frequencies

- To find the harmonic frequencies...

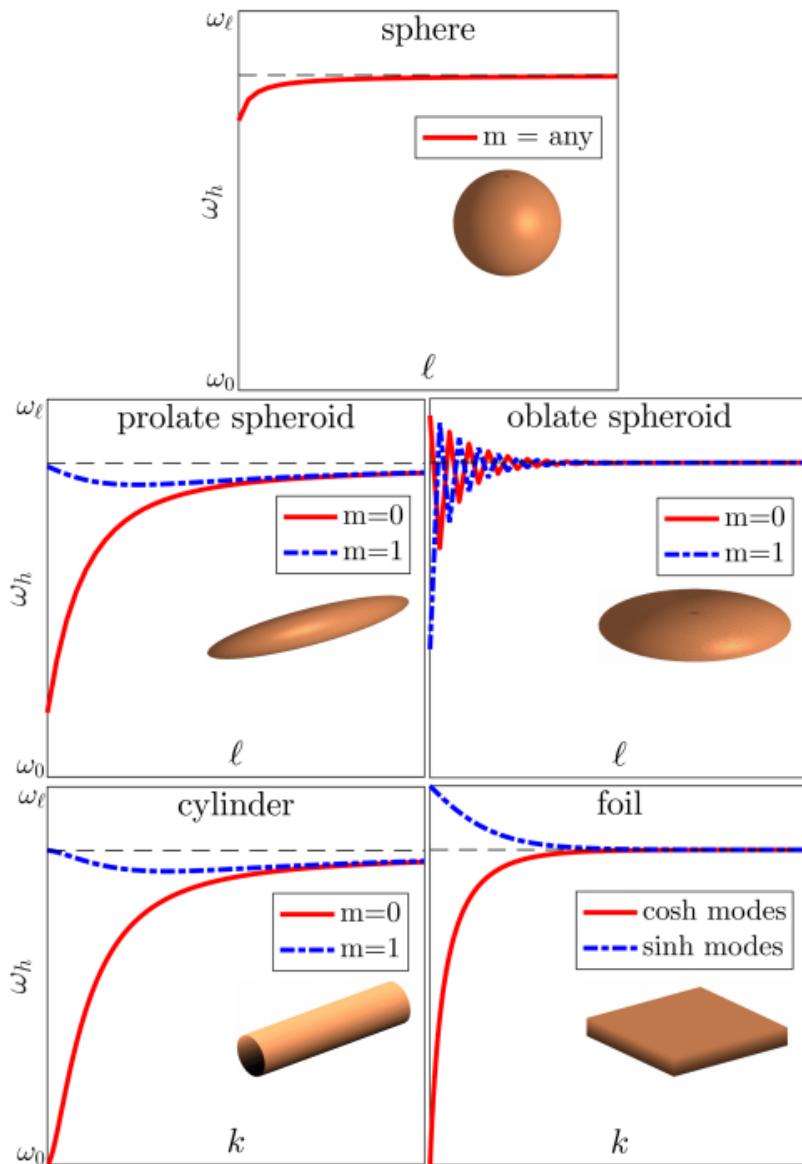
- 1. Scale harmonic functions

$$\phi_{\ell m}^{\text{in}} \propto (r/a)^\ell P_\ell^m(\cos \vartheta) \exp(im\varphi)$$

$$\phi_{\ell m}^{\text{out}} \propto (a/r)^{\ell+1} P_\ell^m(\cos \vartheta) \exp(im\varphi)$$

- 2. Find mode dielectric values

- 3. Find mode frequencies



Harmonic Frequencies

- To find the harmonic frequencies...

- 1. Scale harmonic functions

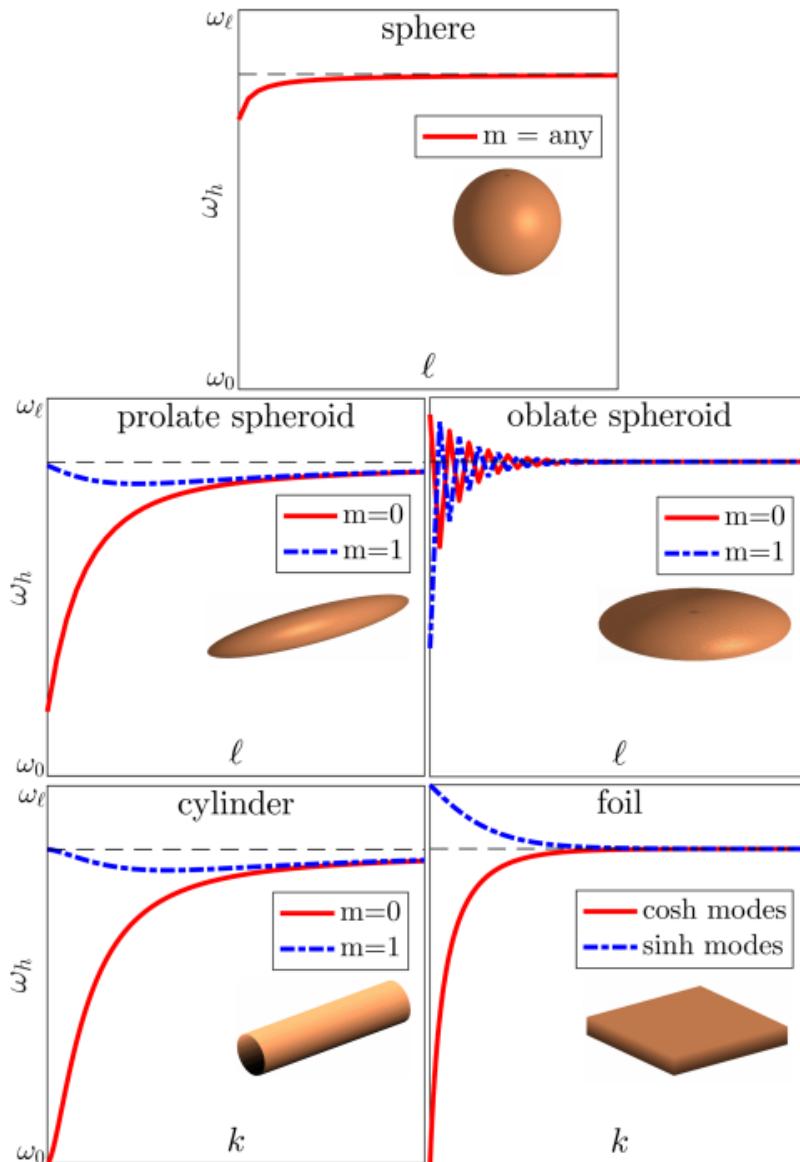
$$\phi_{\ell m}^{\text{in}} \propto (r/a)^\ell P_\ell^m(\cos \vartheta) \exp(im\varphi)$$

$$\phi_{\ell m}^{\text{out}} \propto (a/r)^{\ell+1} P_\ell^m(\cos \vartheta) \exp(im\varphi)$$

- 2. Find mode dielectric values

$$\epsilon_h = \frac{\partial_{\perp} \phi_h^{\text{out}}}{\partial_{\perp} \phi_h^{\text{in}}} \bigg|_{\text{surface}} \quad \rightarrow \quad \epsilon_{\ell m} = -\frac{\ell + 1}{\ell}$$

- 3. Find mode frequencies



Harmonic Frequencies

- To find the harmonic frequencies...

- 1. Scale harmonic functions

$$\phi_{\ell m}^{\text{in}} \propto (r/a)^\ell P_\ell^m(\cos \vartheta) \exp(im\varphi)$$

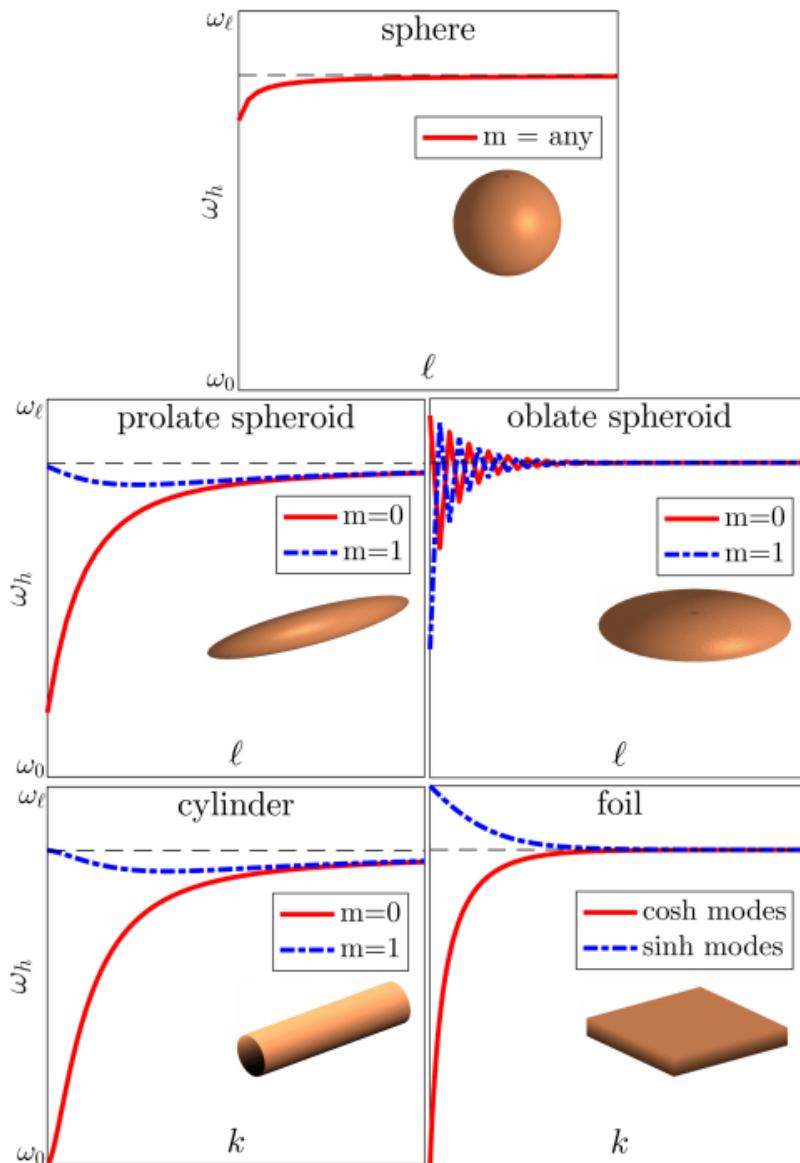
$$\phi_{\ell m}^{\text{out}} \propto (a/r)^{\ell+1} P_\ell^m(\cos \vartheta) \exp(im\varphi)$$

- 2. Find mode dielectric values

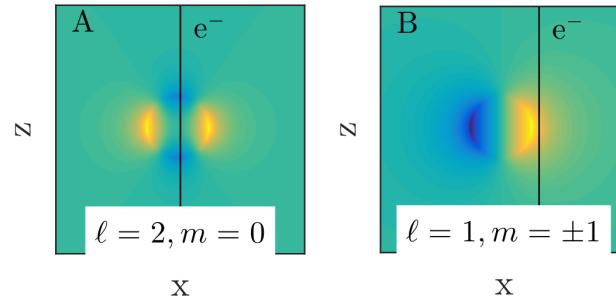
$$\epsilon_h = \frac{\partial_{\perp} \phi_h^{\text{out}}}{\partial_{\perp} \phi_h^{\text{in}}} \bigg|_{\text{surface}} \quad \rightarrow \quad \epsilon_{\ell m} = -\frac{\ell + 1}{\ell}$$

- 3. Find mode frequencies

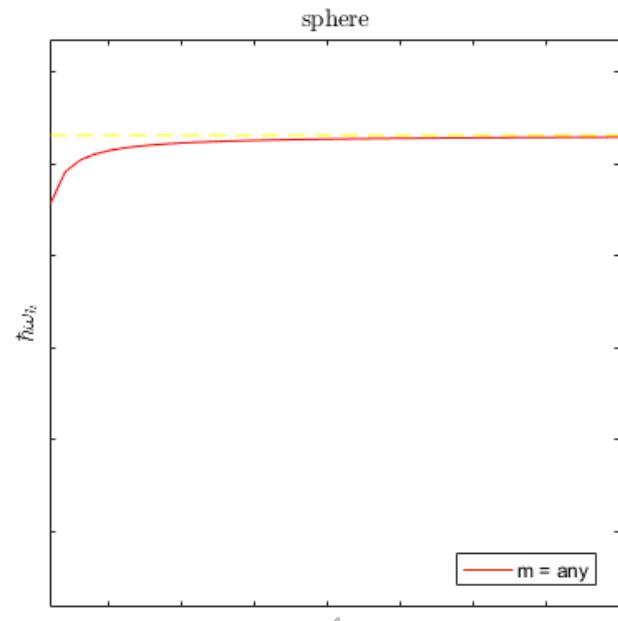
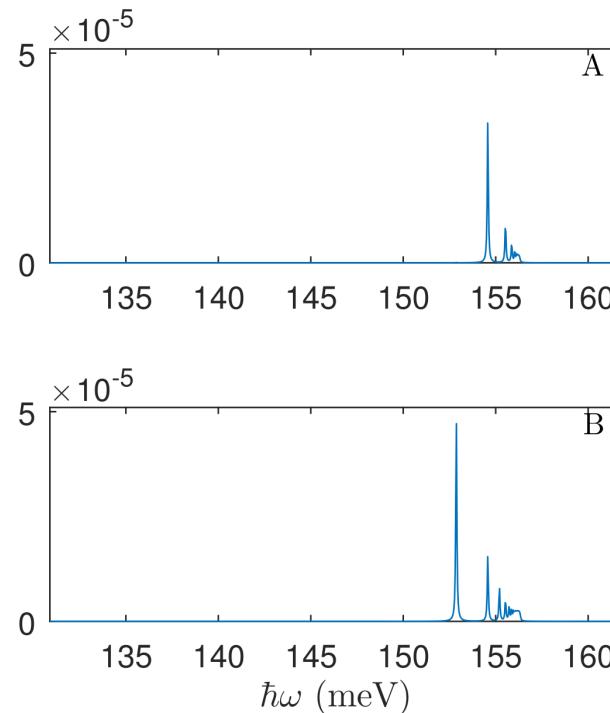
$$\epsilon(\omega_h) = \epsilon_h \quad \rightarrow \quad \omega_{\ell m}^2 = \frac{\ell \epsilon_{\infty} \omega_{\ell}^2 + (\ell + 1) \omega_0^2}{\ell \epsilon_{\infty} + (\ell + 1)}$$



Sphere

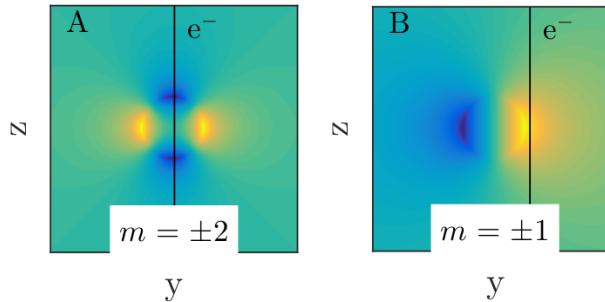
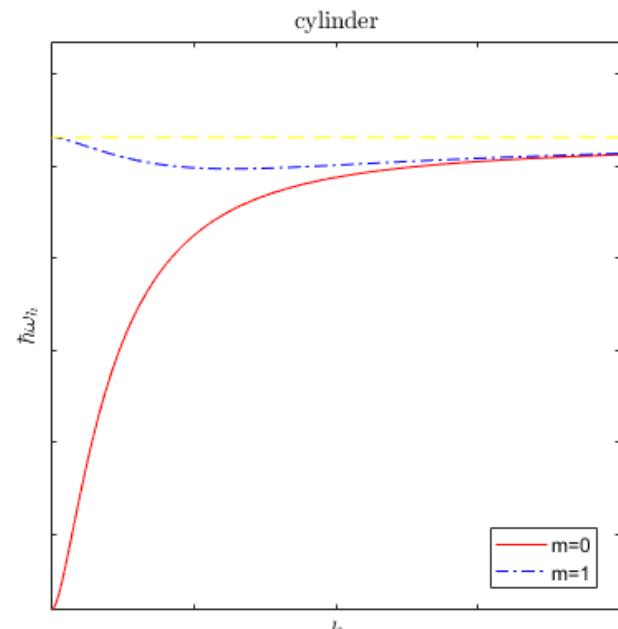
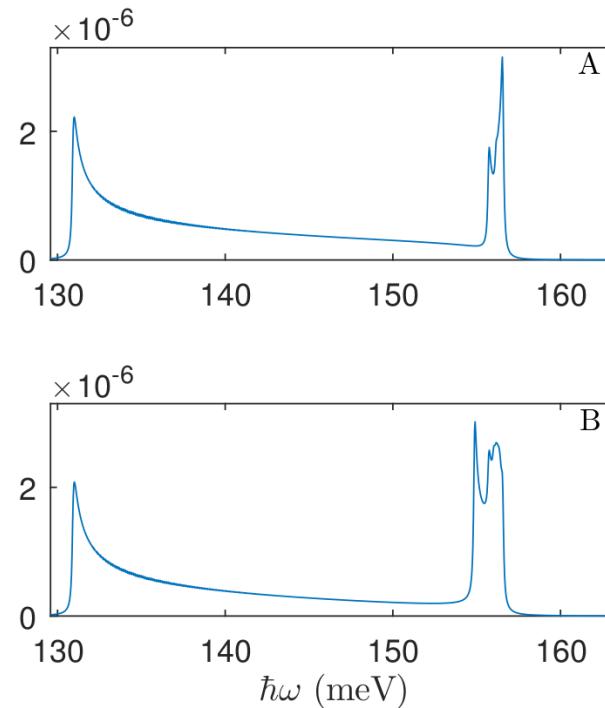


$$\phi_{\ell m}^{\text{in}} \propto (r/a)^\ell P_\ell^m(\cos \vartheta) \exp(im\varphi)$$
$$\phi_{\ell m}^{\text{out}} \propto (a/r)^{\ell+1} P_\ell^m(\cos \vartheta) \exp(im\varphi)$$

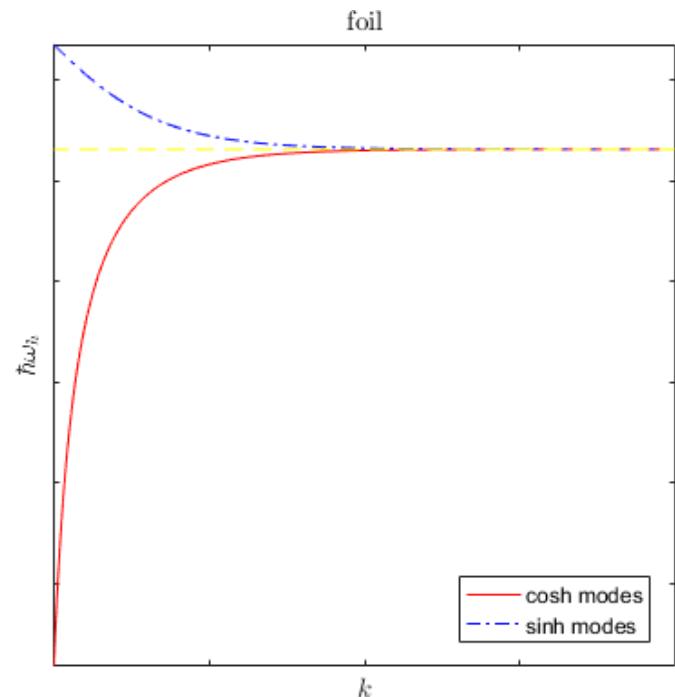
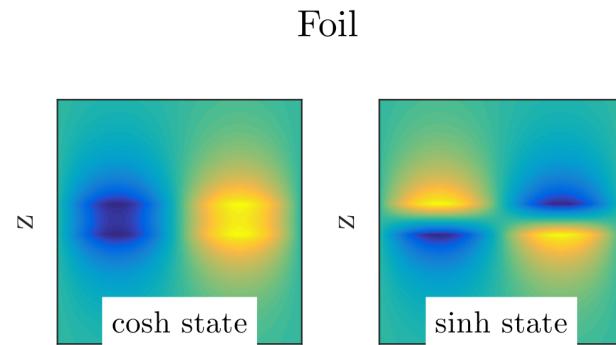
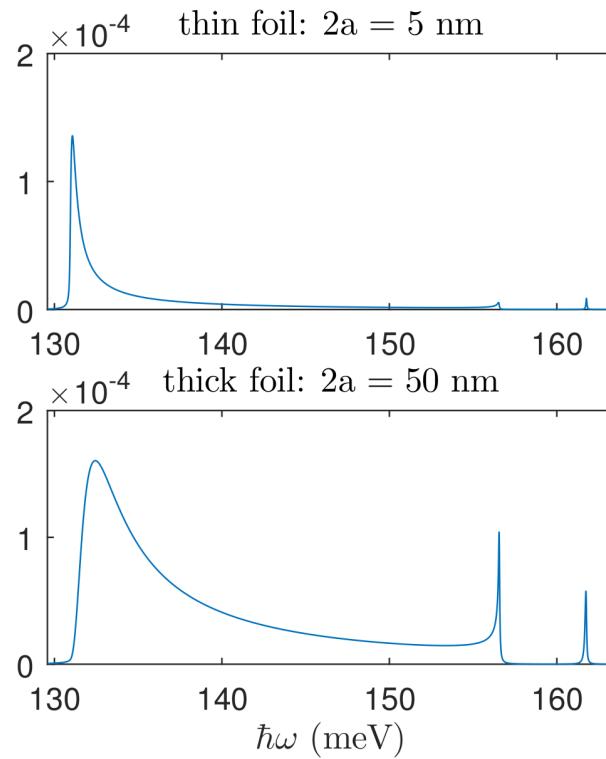


Cylinder

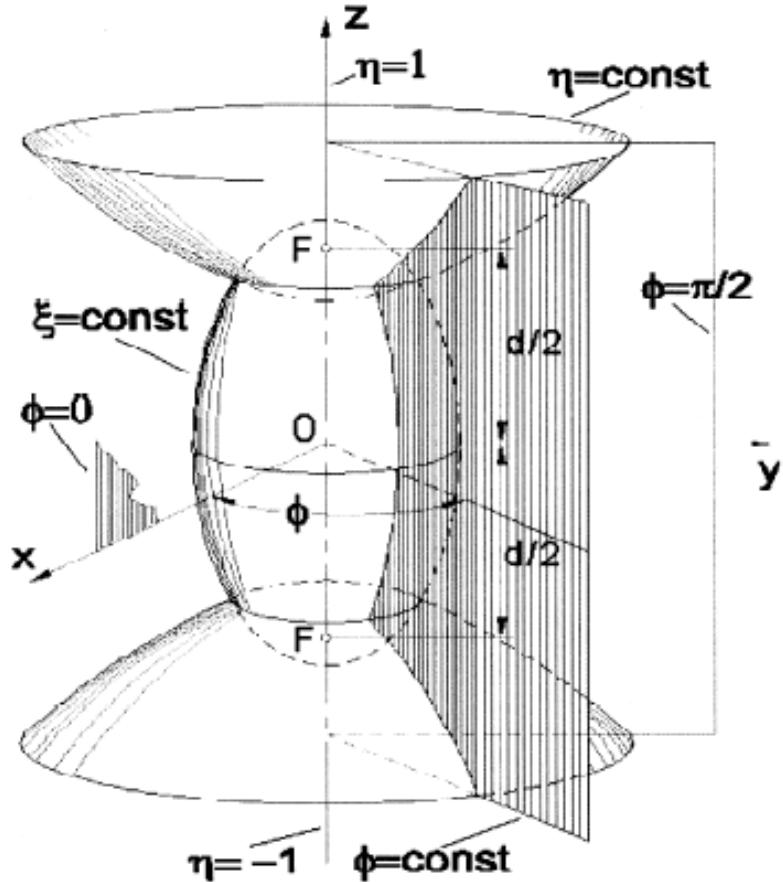
$$\phi_{km}^{\text{in}} \propto \exp(ikx + im\varphi) I_{|m|}(|k|\rho)$$
$$\phi_{km}^{\text{out}} \propto \exp(ikx + im\varphi) K_{|m|}(|k|\rho)$$



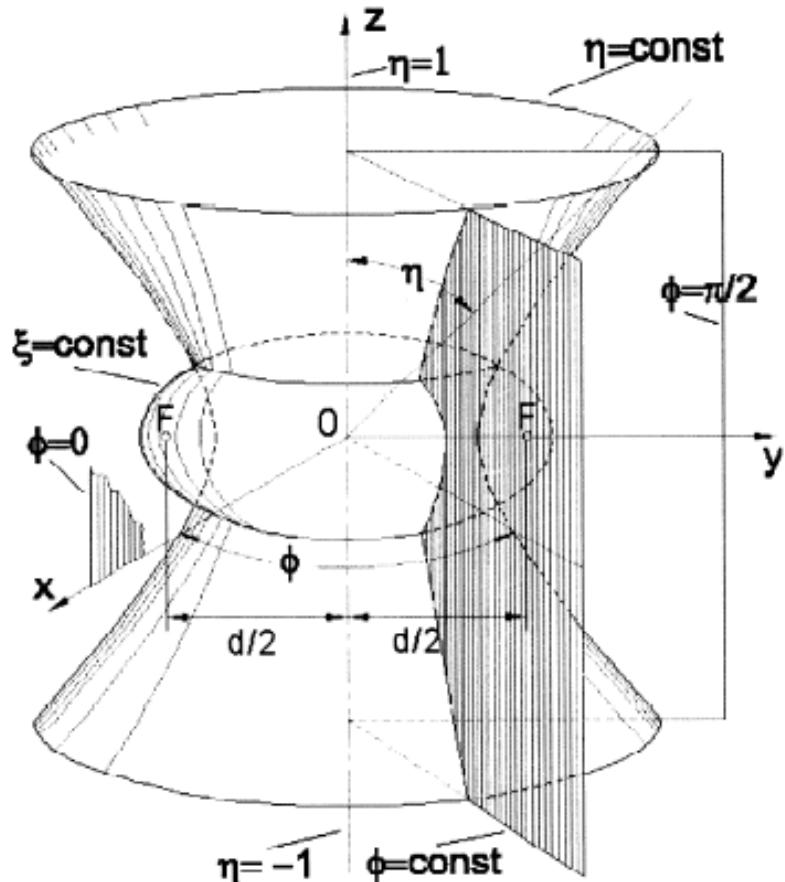
$$\phi_{\mathbf{k}}^{\text{in}} \propto \exp(i\mathbf{k} \cdot \mathbf{x}) \begin{cases} \cosh(|\mathbf{k}|z) \\ \sinh(|\mathbf{k}|z) \end{cases}$$



prolate spheroidal coordinates



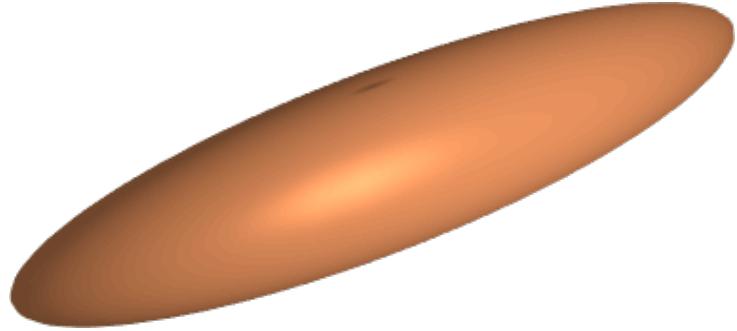
oblate spheroidal coordinates



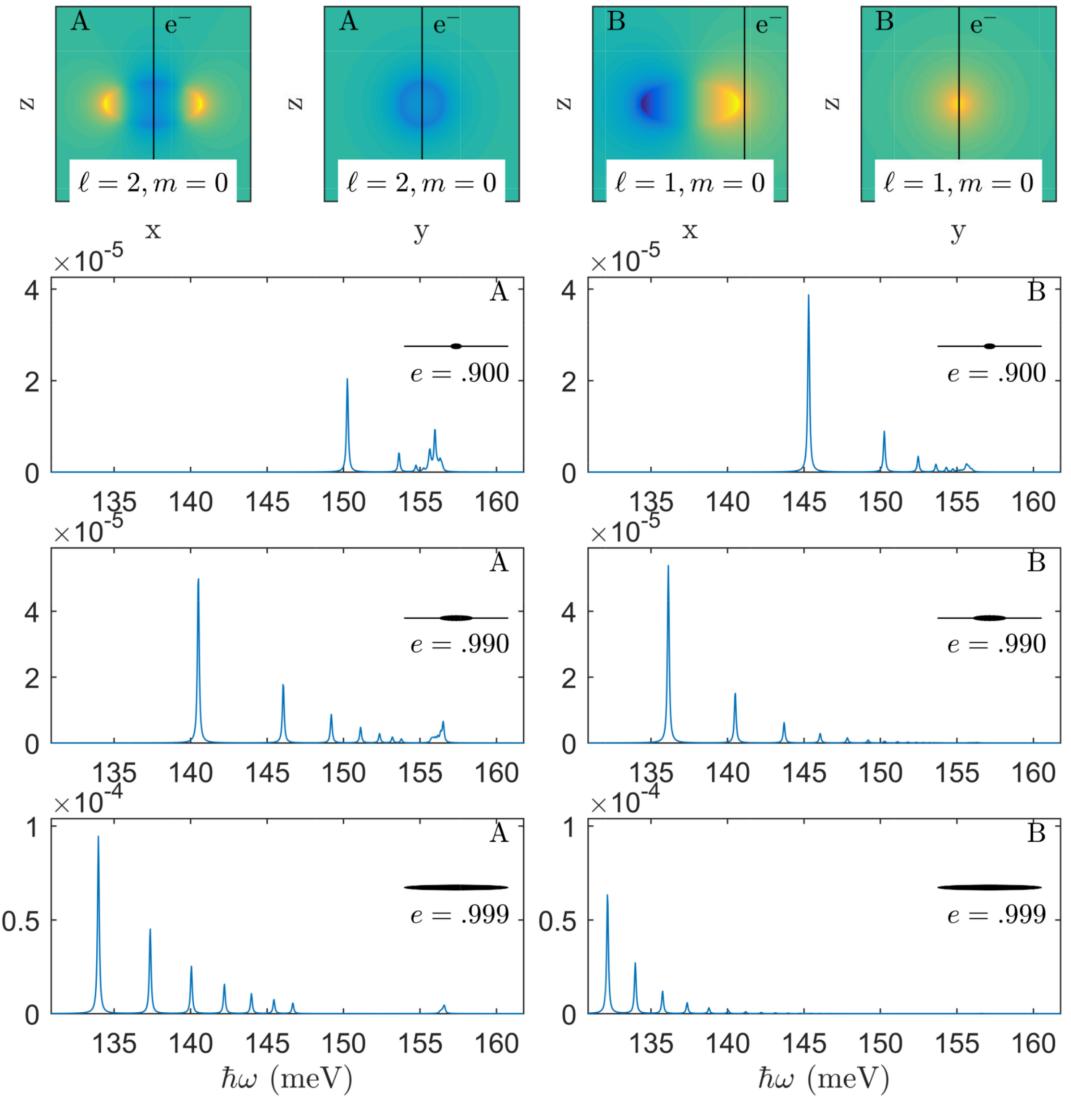
L.-W. Li, X.-K. Kang, and M.-S. Leong, *Spheroidal Wave Functions in Electromagnetic Theory*, John Wiley & Sons, 2002.

Prolate Spheroids

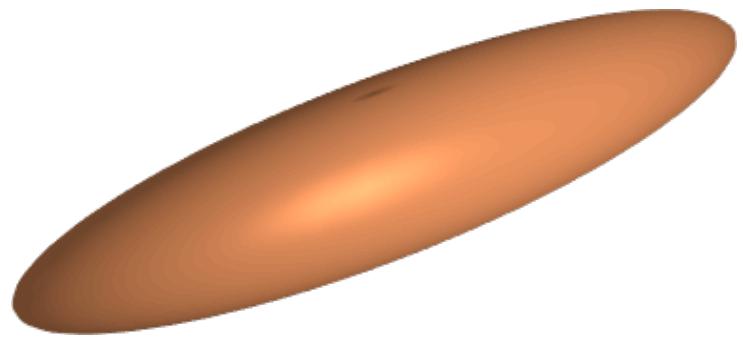
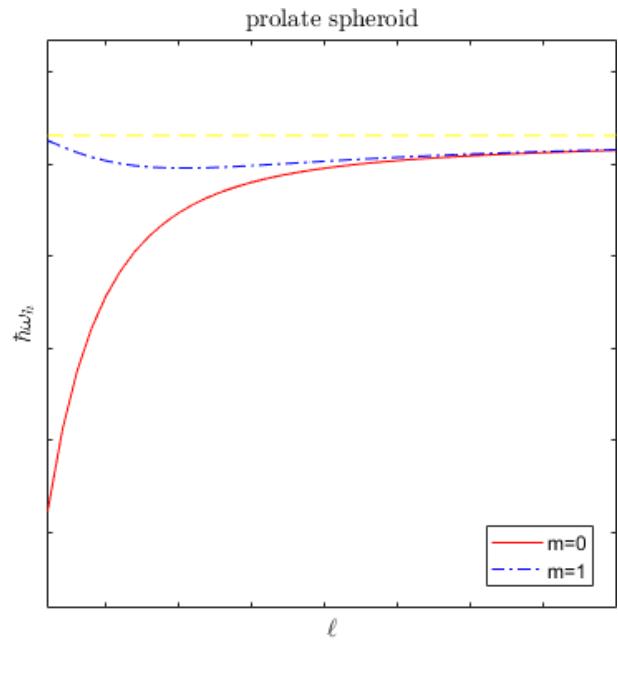
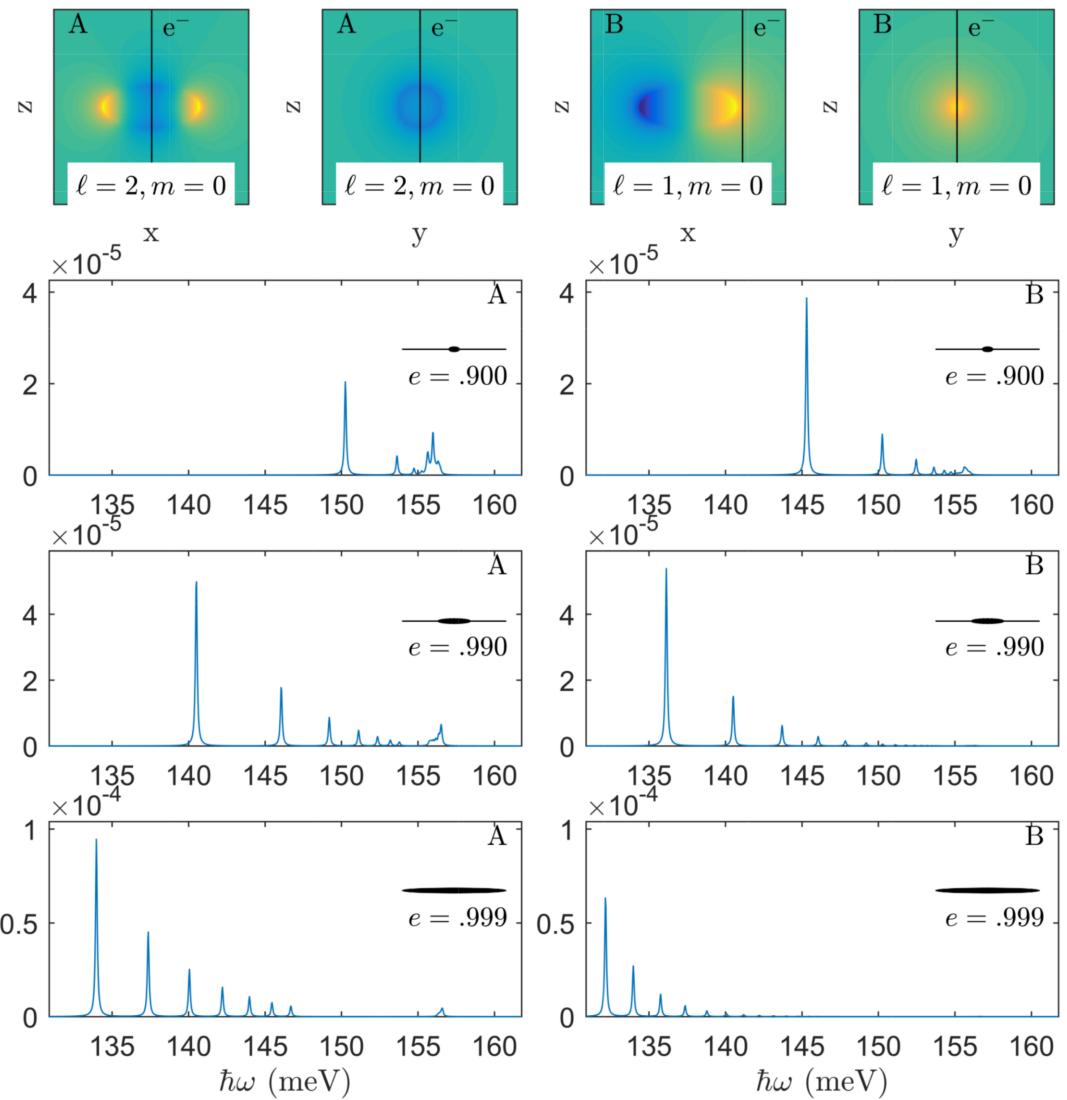
$$\begin{aligned}
 x &= c \cosh(\varrho) \cos(\vartheta) & 0 \leq \varrho < \infty \\
 y &= c \sinh(\varrho) \sin(\vartheta) \cos(\varphi) & 0 \leq \vartheta \leq \pi \\
 z &= c \sinh(\varrho) \sin(\vartheta) \sin(\varphi) & 0 \leq \varphi \leq 2\pi
 \end{aligned}$$



$$\begin{aligned}
 \phi_{\ell m}^{\text{in}} &\propto P_\ell^m(\cosh \varrho) P_\ell^m(\cos \vartheta) \exp(im\varphi) \\
 \phi_{\ell m}^{\text{out}} &\propto Q_\ell^m(\cosh \varrho) P_\ell^m(\cos \vartheta) \exp(im\varphi)
 \end{aligned}$$

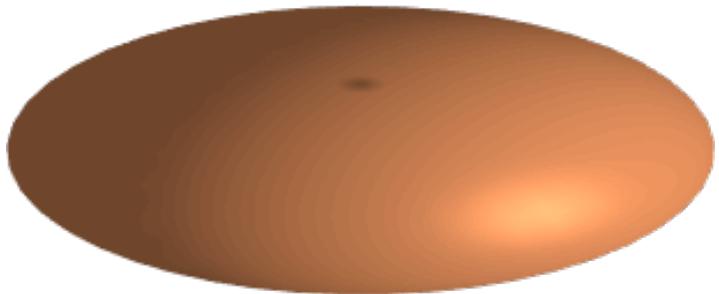


Prolate Spheroids

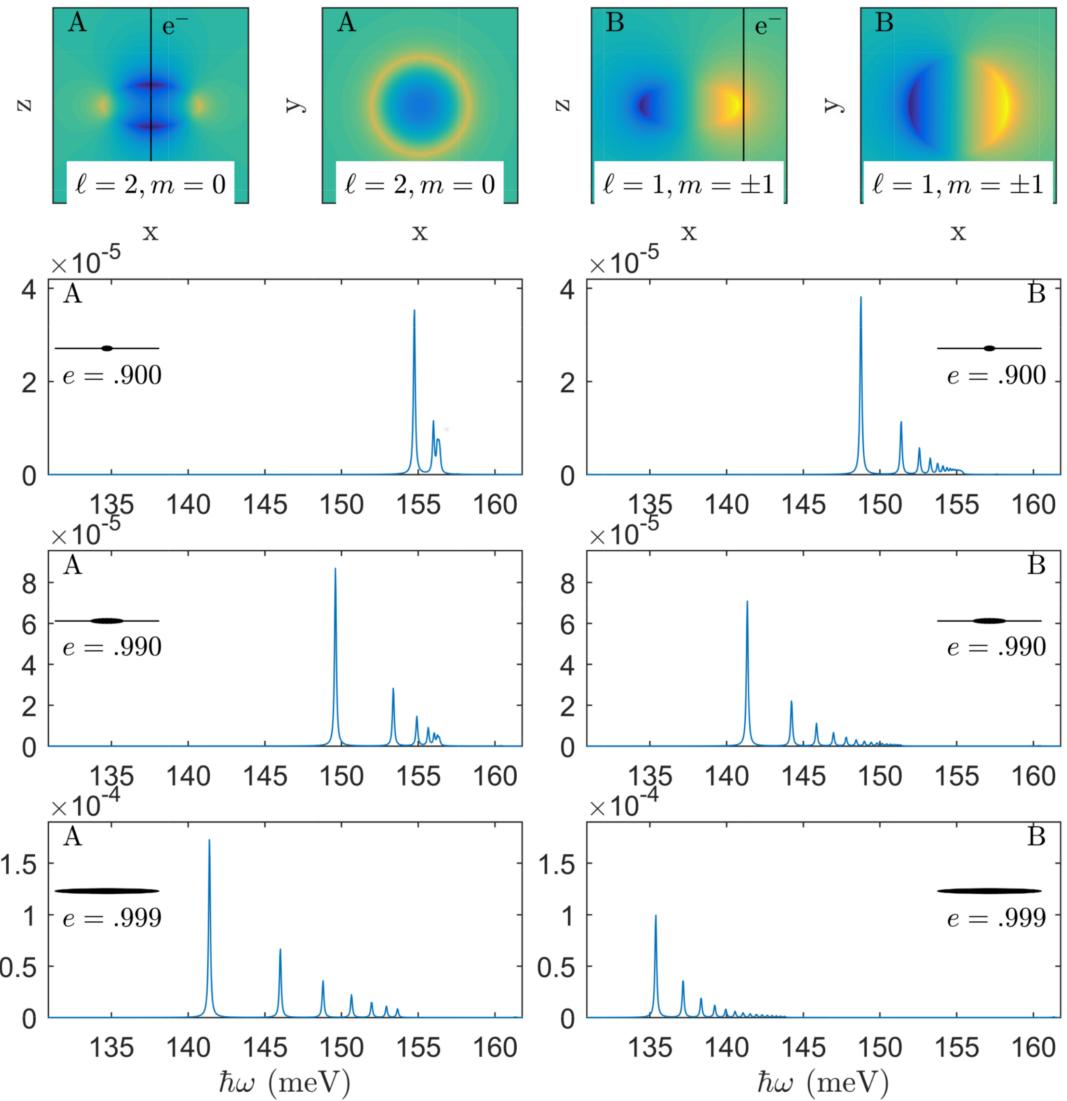


Oblate Spheroids

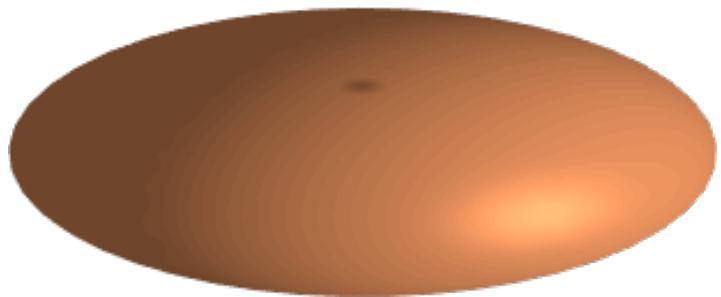
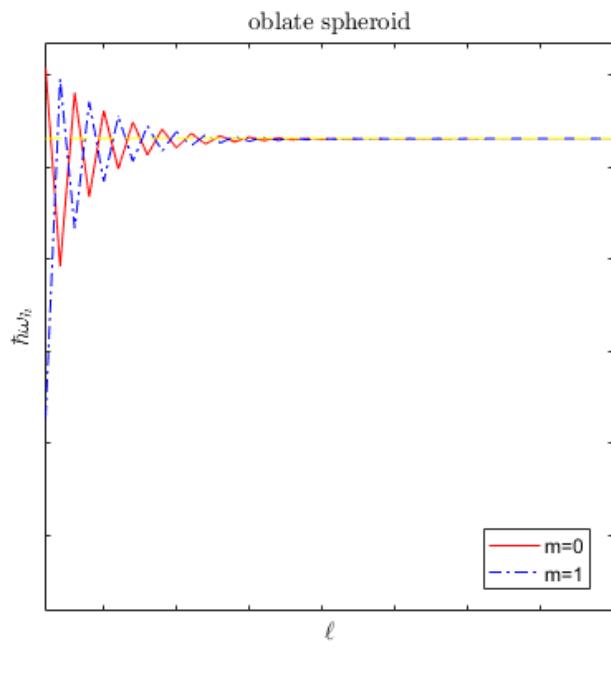
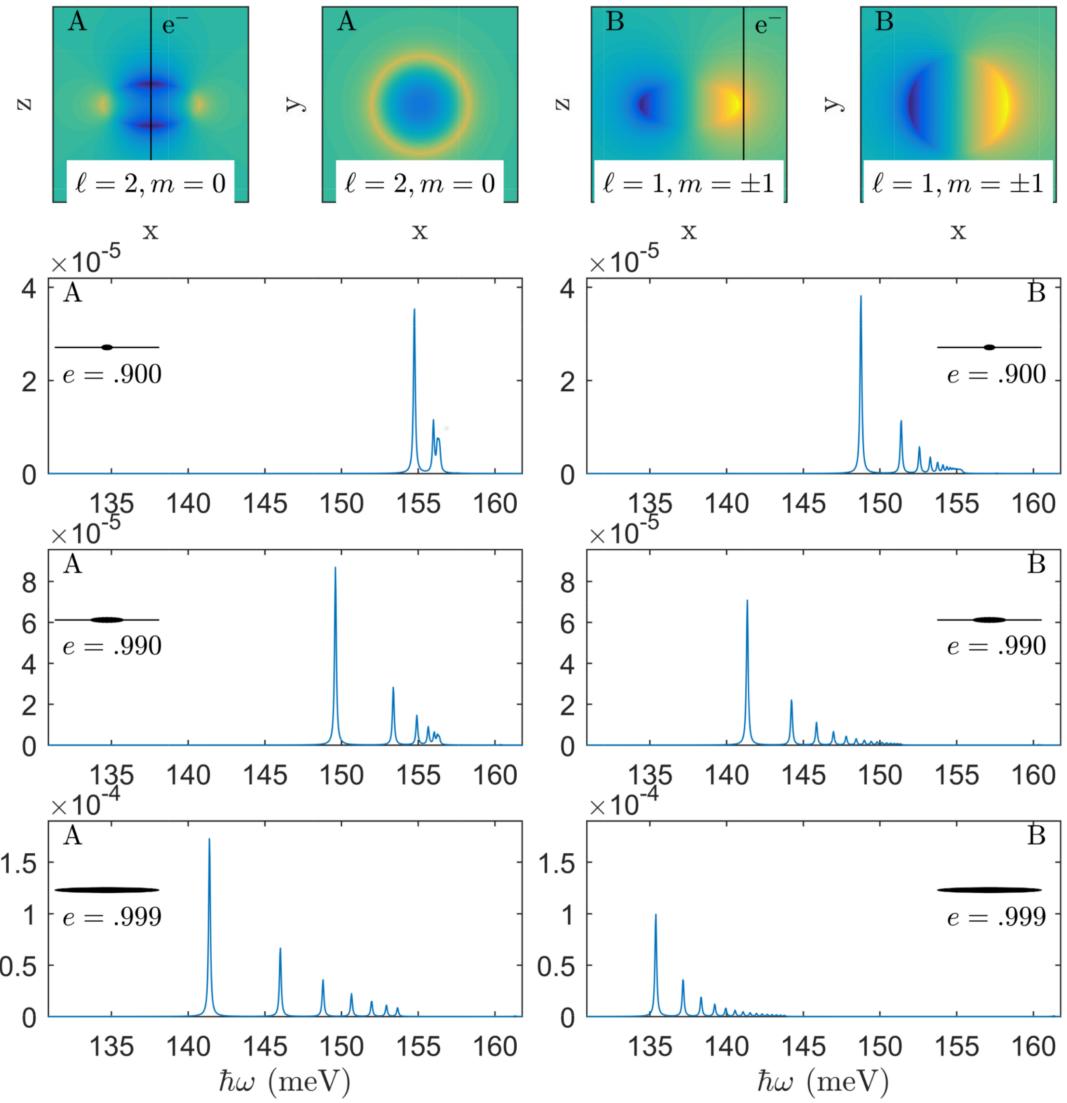
$$\begin{aligned}
 x &= c \cosh(\varrho) \cos(\vartheta) \cos(\varphi) & 0 \leq \varrho < \infty \\
 y &= c \cosh(\varrho) \cos(\vartheta) \sin(\varphi) & -\pi/2 \leq \vartheta \leq \pi/2 \\
 z &= c \sinh(\varrho) \sin(\vartheta) & 0 \leq \varphi \leq 2\pi
 \end{aligned}$$

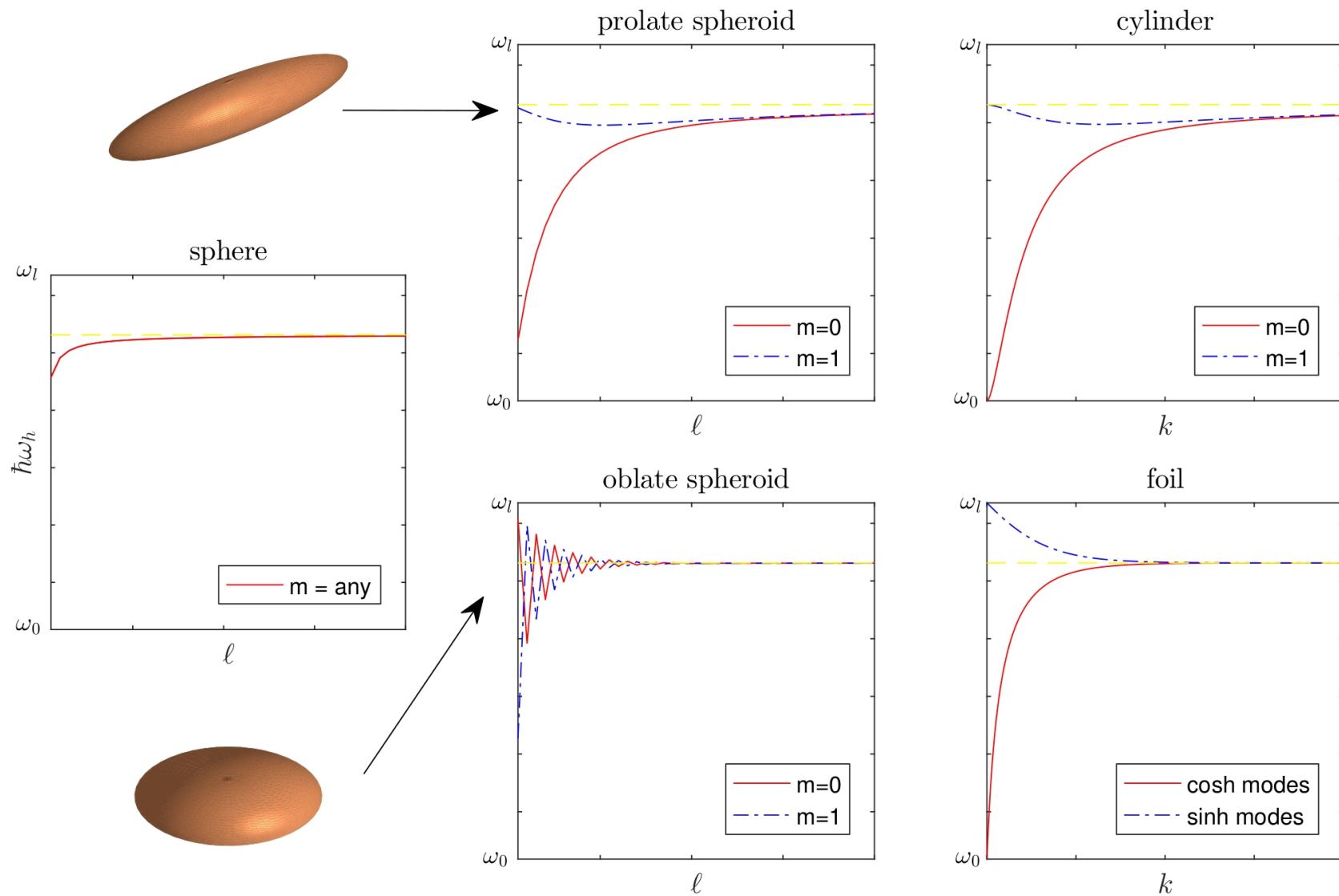


$$\begin{aligned}
 \phi_{\ell m}^{\text{in}} &\propto P_\ell^m(i \sinh \varrho) P_\ell^m(\sin \vartheta) \exp(im\varphi) \\
 \phi_{\ell m}^{\text{out}} &\propto Q_\ell^m(i \sinh \varrho) P_\ell^m(\sin \vartheta) \exp(im\varphi)
 \end{aligned}$$

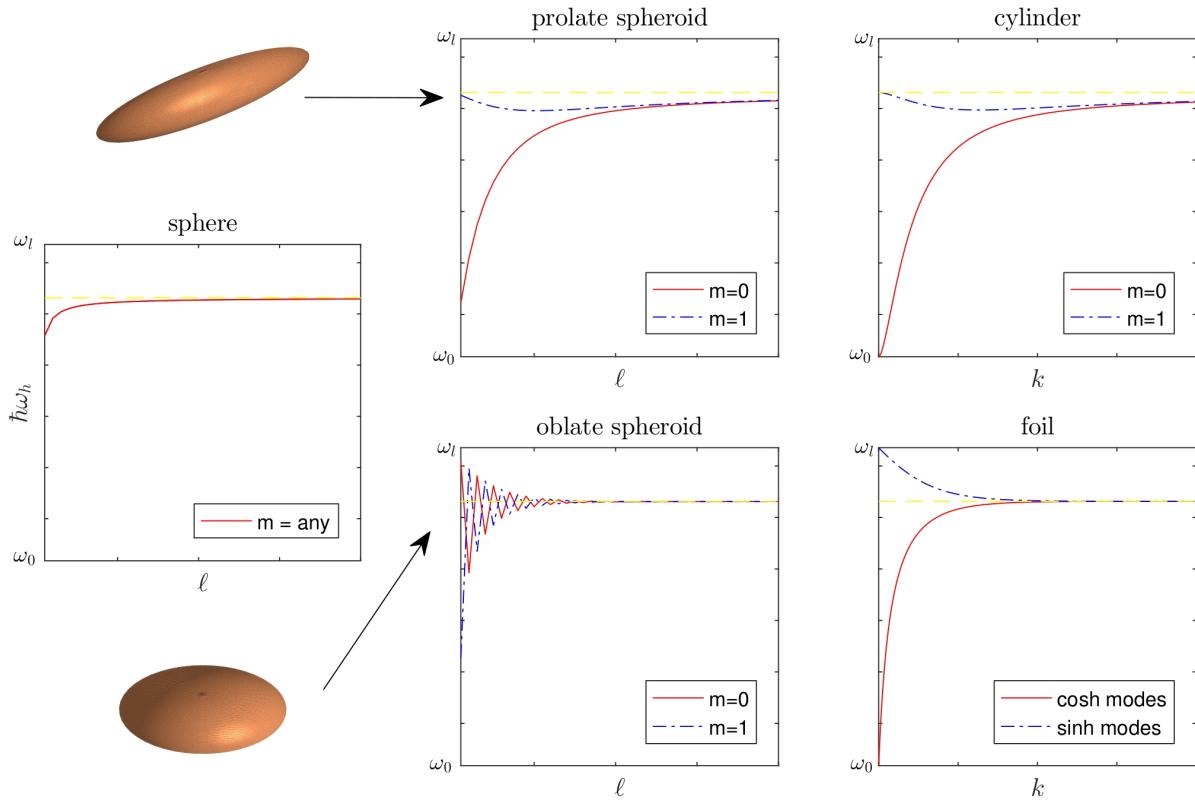


Oblate Spheroids

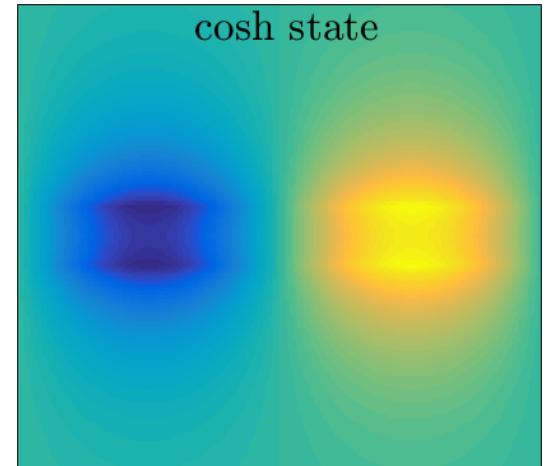




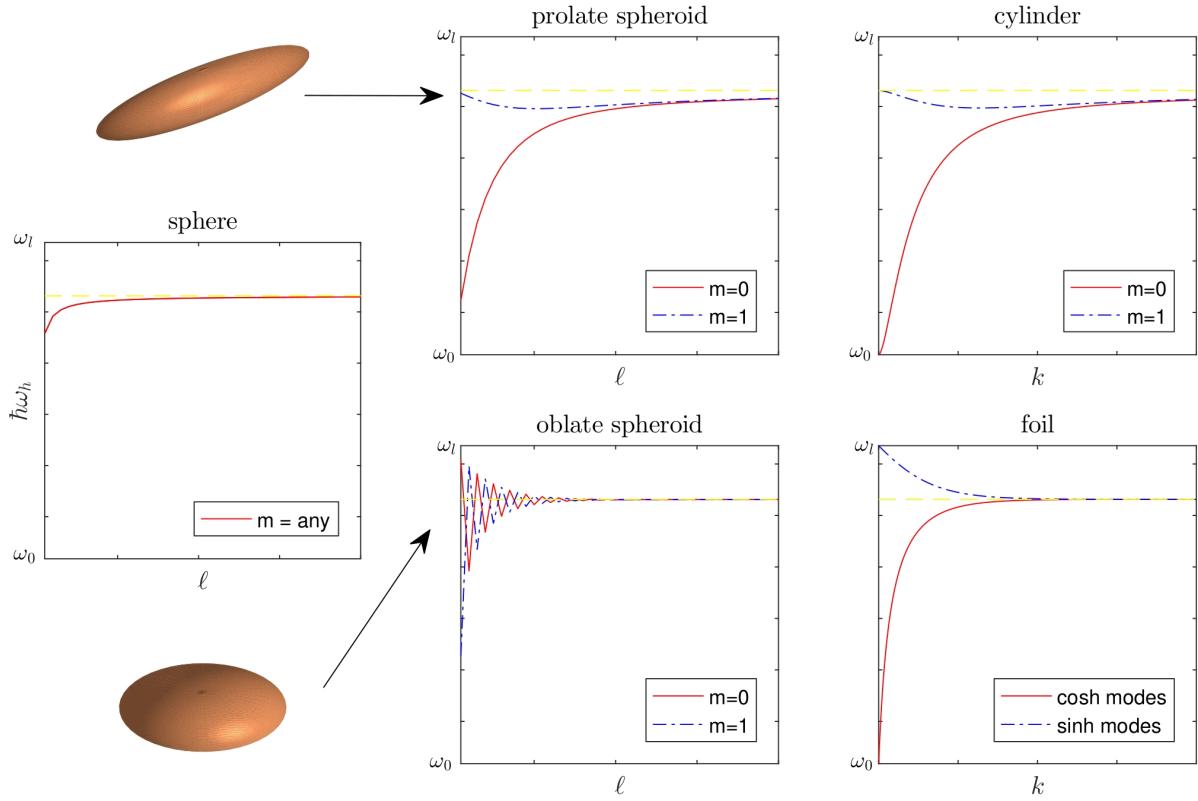
What are the surface states like?



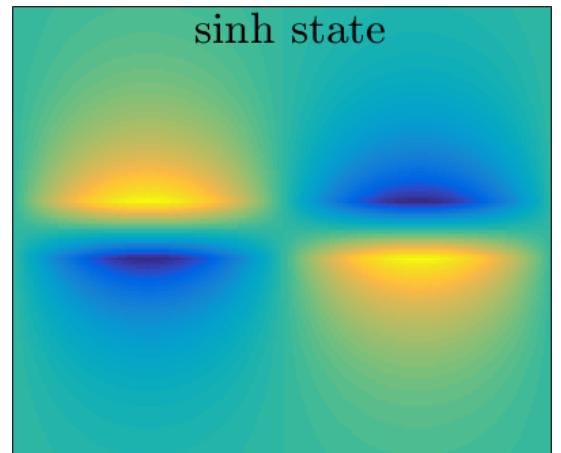
- **Cosh-like states**
 - Low energy
 - Strongly scattering
 - Low density-of-states



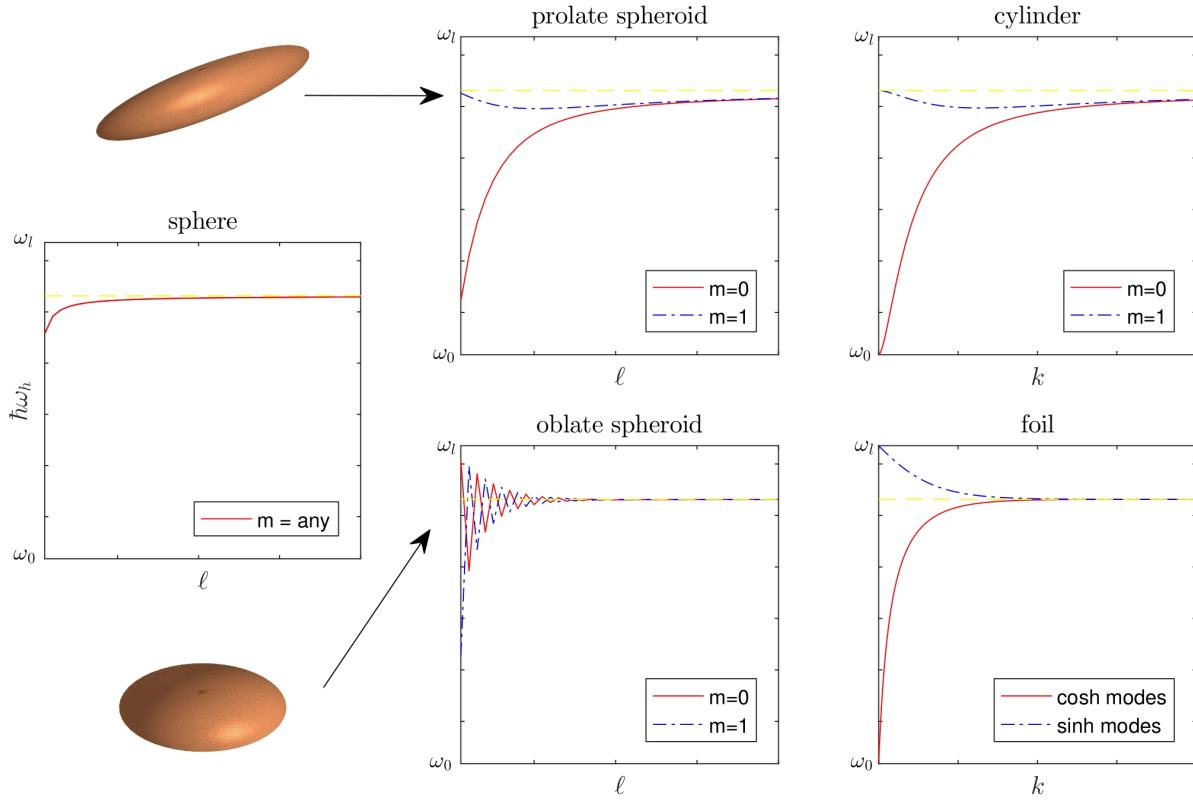
What are the surface states like?



- **Sinh-like states**
 - High energy
 - Weakly scattering
 - Low density-of-states

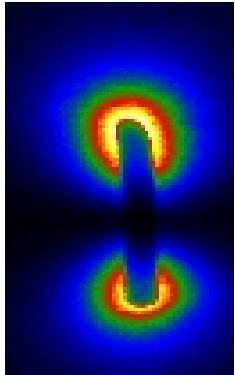


What are the surface states like?

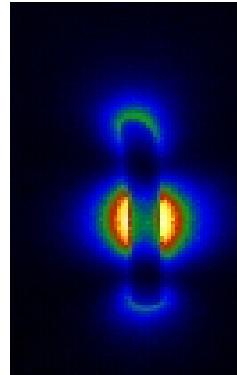


- **States with $\epsilon(\omega) \approx -1$**
 - Mid-range energy
 - Weakly scattering
 - High density-of-states
- When $\phi_h^{\text{in}} \approx -\phi_h^{\text{out}}|_{\text{surface}}$, the electric field is determined by local surface charge, and the surfaces are approximately decoupled

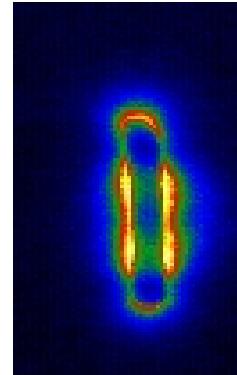
Prolate Spheroids as Lightning Rods



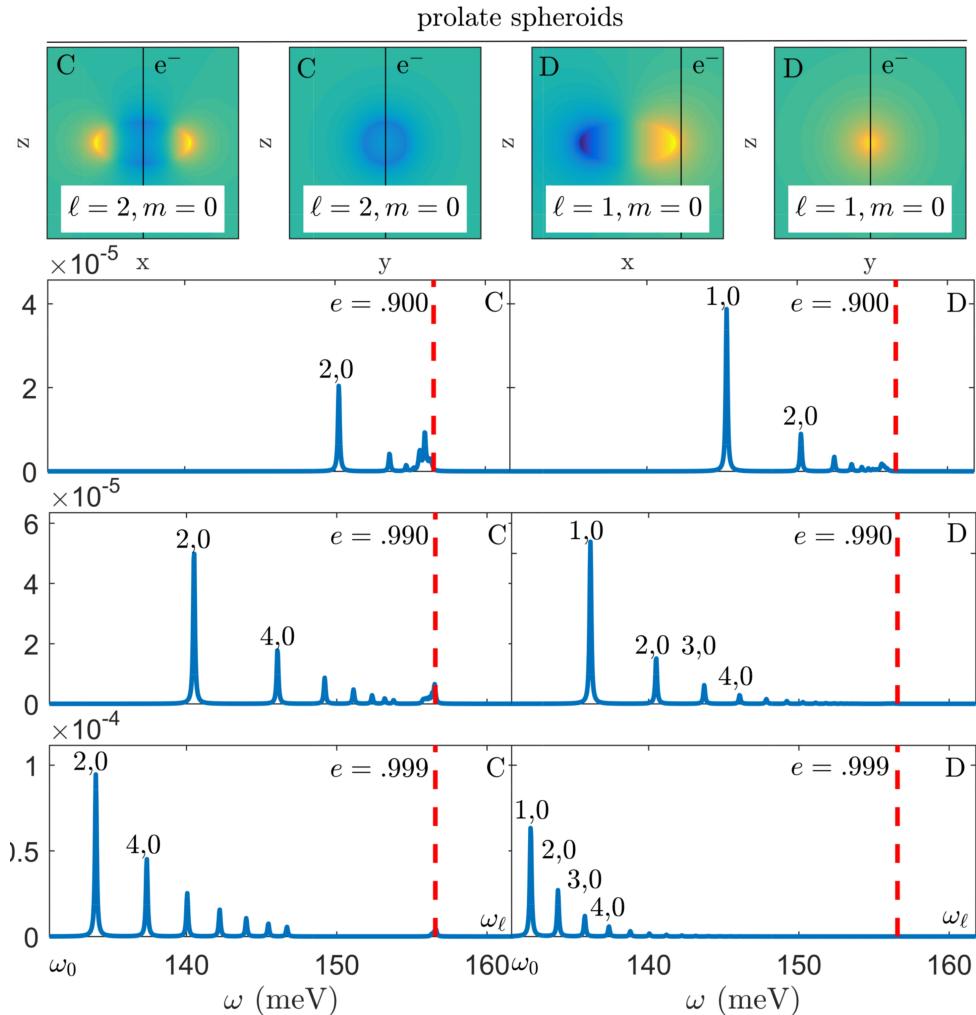
SP mode 1



SP mode 2



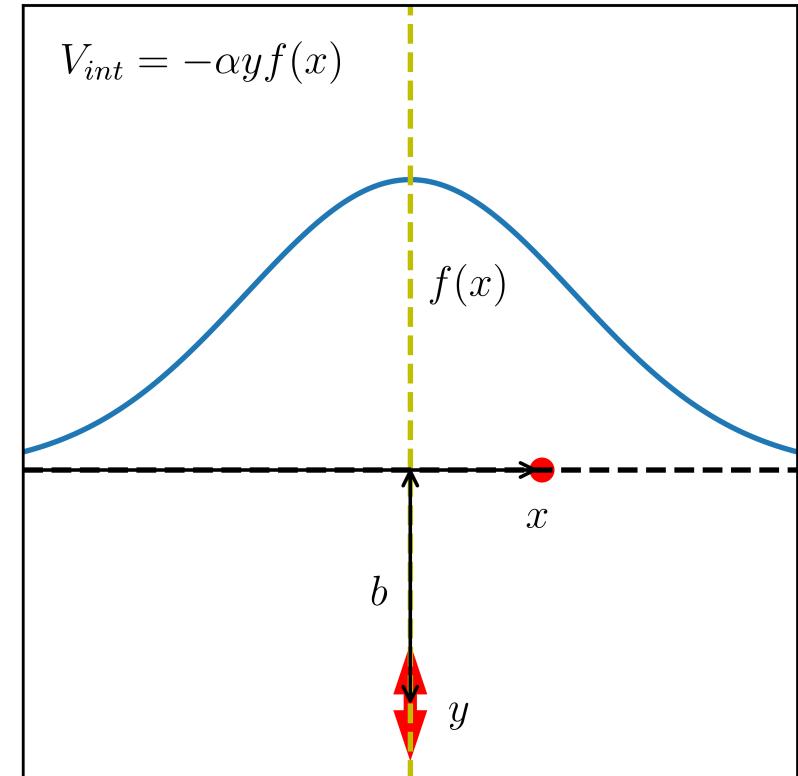
SP mode 3



Project 3: Classical-Quantum Comparison

- Let's capture this with a **1D model**:
 - 1D beam** (variable: x , mass: m)
 - 1D oscillator** (variable: y , mass: μ , angular frequency: ω_0)
- The Hamiltonian is straightforward:

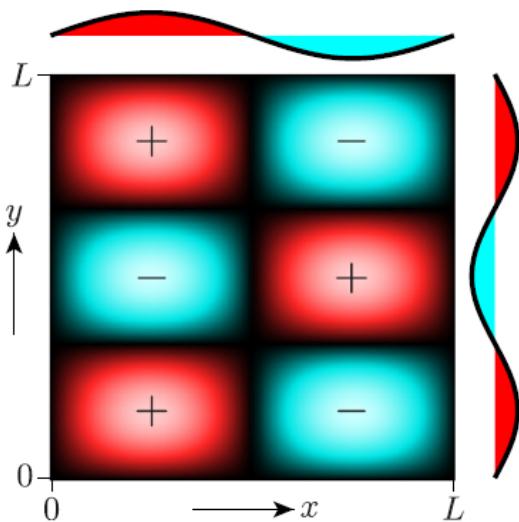
$$H = \underbrace{\frac{p_x^2}{2m}}_{\text{beam}} + \underbrace{\frac{p_y^2}{2\mu}}_{\text{oscillator}} + \underbrace{\frac{1}{2}\omega_0^2\mu y^2 - \alpha y f(x)}_{\text{interaction}}$$



Background Reading

- Explicit illustration: **two 1D particles** trapped in a box
- Example on the right is “**entangled**” – can’t factor it!

$$\psi(x, y) \propto \sin\left(\frac{n_x \pi x}{L}\right) \sin\left(\frac{n_y \pi y}{L}\right)$$



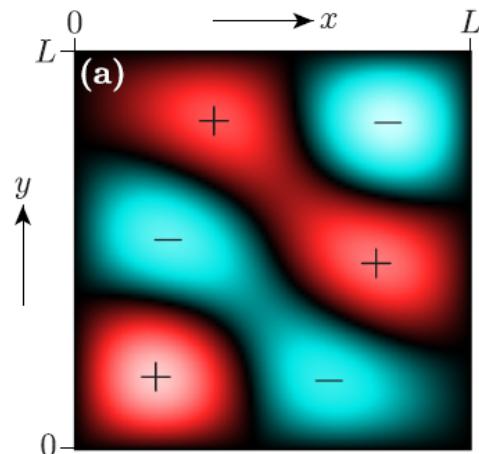
$$\psi \propto \sin\left(\frac{2\pi x}{L}\right) \sin\left(\frac{3\pi y}{L}\right) + \frac{1}{2} \sin\left(\frac{3\pi x}{L}\right) \sin\left(\frac{2\pi y}{L}\right)$$

Entanglement isn't just for spin

Daniel V. Schroeder

Am. J. Phys. 85, 812–820 (2017)

<https://doi.org/10.1119/1.5003808>



Entanglement and Inelastic Scattering

- **Entanglement** in scattering situations arises naturally from the **interaction** between the “beam” and the “target”

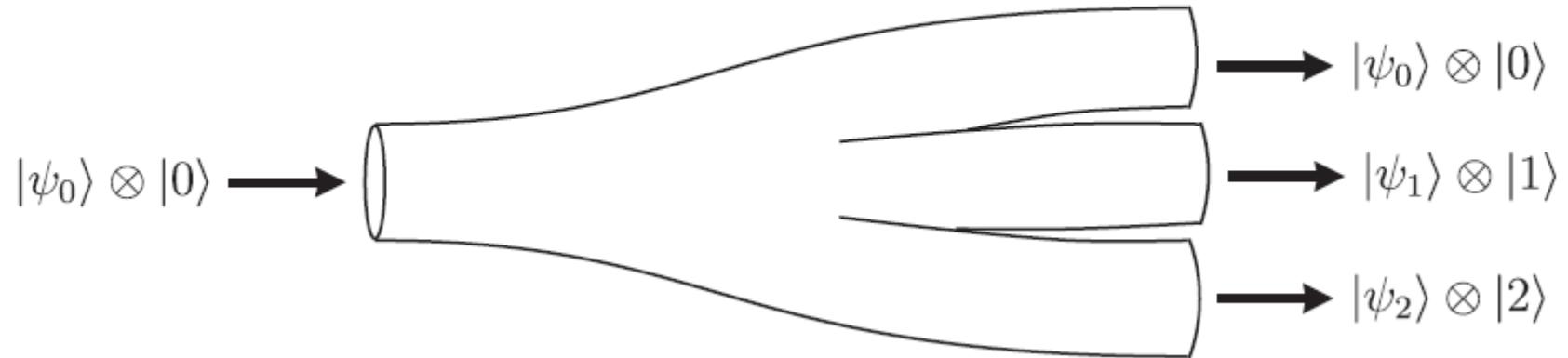


Illustration by Christian Dwyer, in a [review article](#)
“Atomic-Resolution Core-Level Spectroscopy
in the Scanning Transmission Electron Microscope”

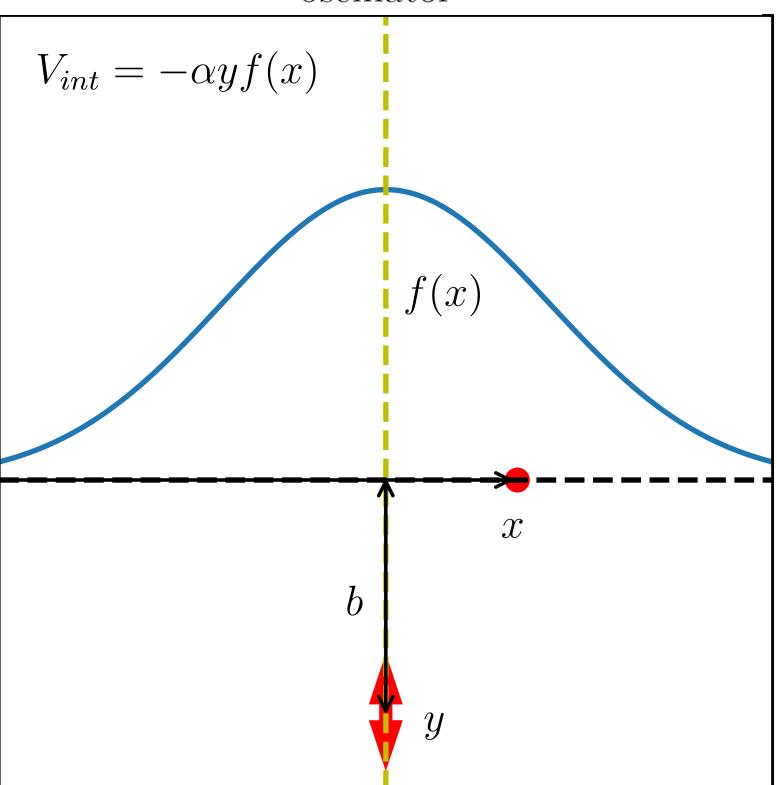
Consequences of the Full Classical Model

- We can find **classical equations of motion** for each variable

$$m\ddot{x} = \alpha y \frac{df}{dx}$$

$$\mu\ddot{y} = -\mu\omega_0^2 y + \alpha f(x)$$

$$H = \underbrace{\frac{p_x^2}{2m}}_{\text{beam}} + \underbrace{\frac{p_y^2}{2\mu}}_{\text{oscillator}} + \underbrace{\frac{1}{2}\omega_0^2\mu y^2 - \alpha y f(x)}_{\text{interaction}}$$



Consequences of the Full Classical Model

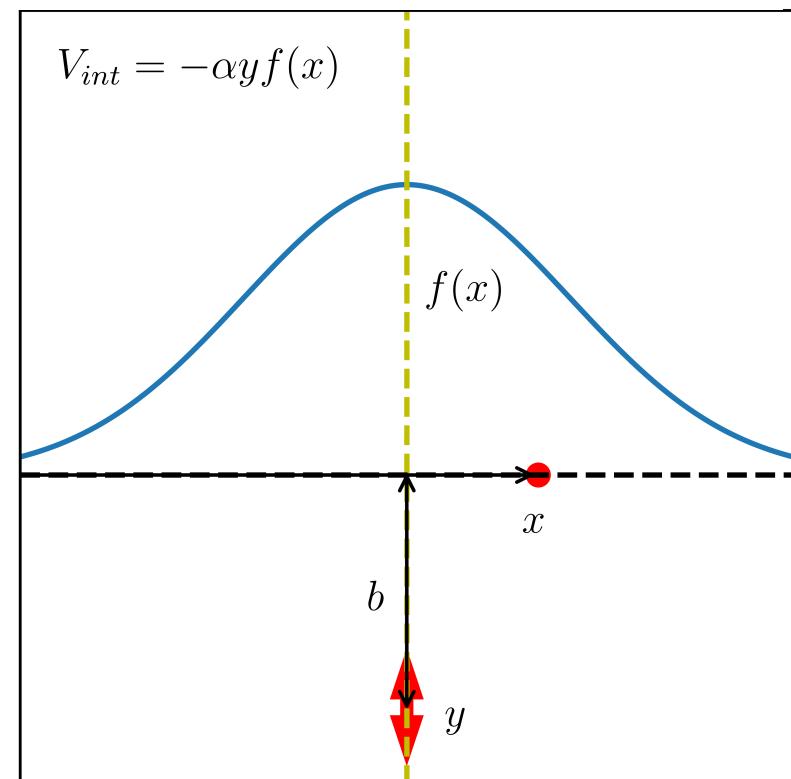
- We can find classical equations of motion for each variable

$$m\ddot{x} = \alpha y \frac{df}{dx}$$

$$\mu\ddot{y} = -\mu\omega_0^2 y + \alpha f(x)$$

- When the beam travels swiftly ($x \approx v_0 t$), a **predictable amount of energy is transferred** from beam to oscillator (assuming it starts at rest)

$$H = \underbrace{\frac{p_x^2}{2m}}_{\text{beam}} + \underbrace{\frac{p_y^2}{2\mu}}_{\text{oscillator}} + \underbrace{\frac{1}{2}\omega_0^2\mu y^2 - \alpha y f(x)}_{\text{interaction}}$$



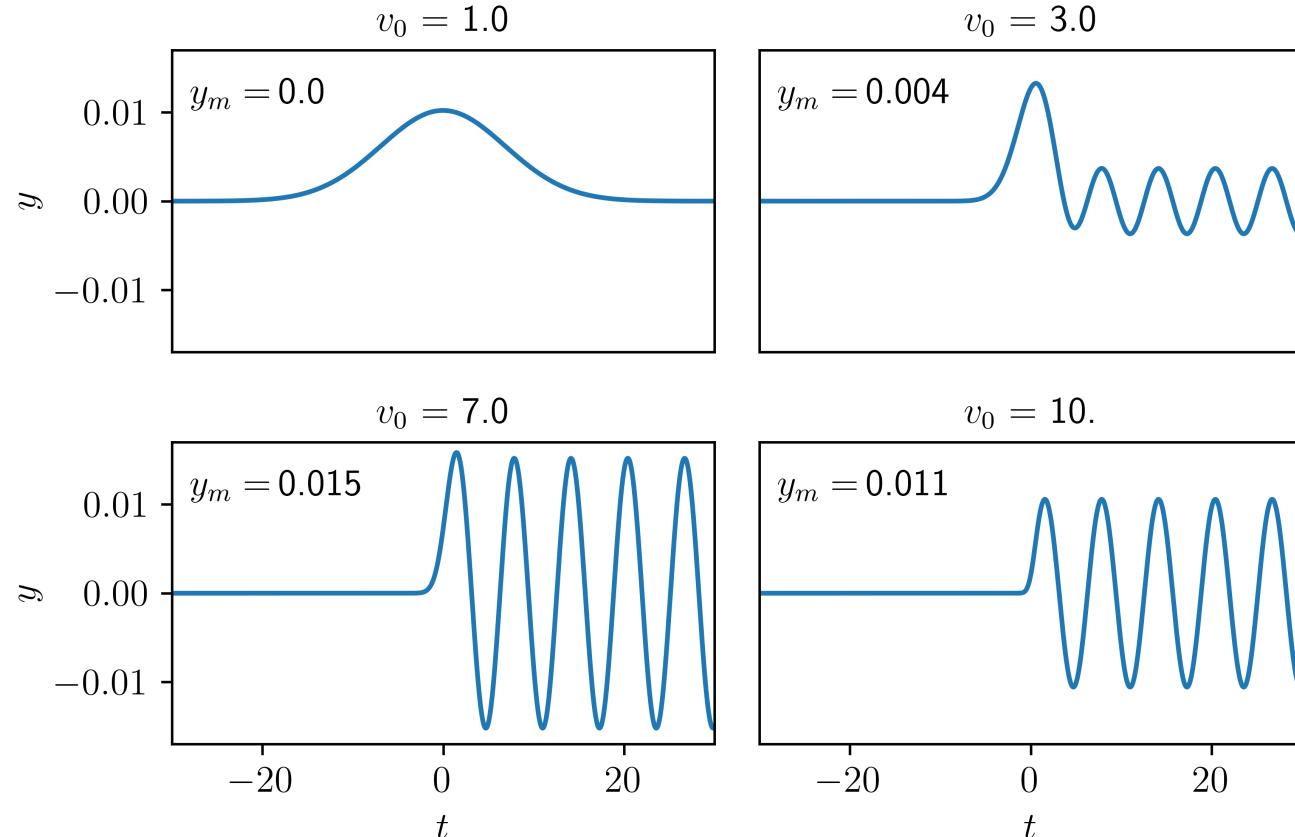
Classical Oscillations

- Final **amplitude** depends directly on **model** and **initial conditions**

$$m\ddot{x} = \alpha y \frac{df}{dx}$$

$$\mu\ddot{y} = -\mu\omega_0^2 y + \alpha f(x)$$

$$f(x) = b^{-2} e^{-x^2/b^2}$$



Quantum Harmonic Oscillator

- States of the QHO look like **trapped waves**

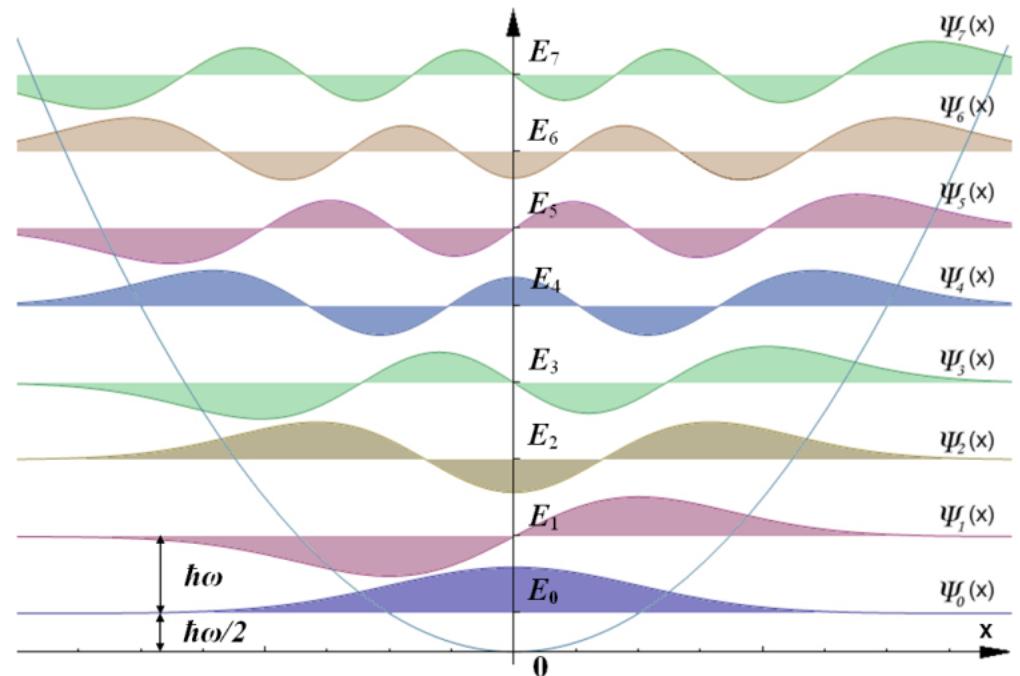
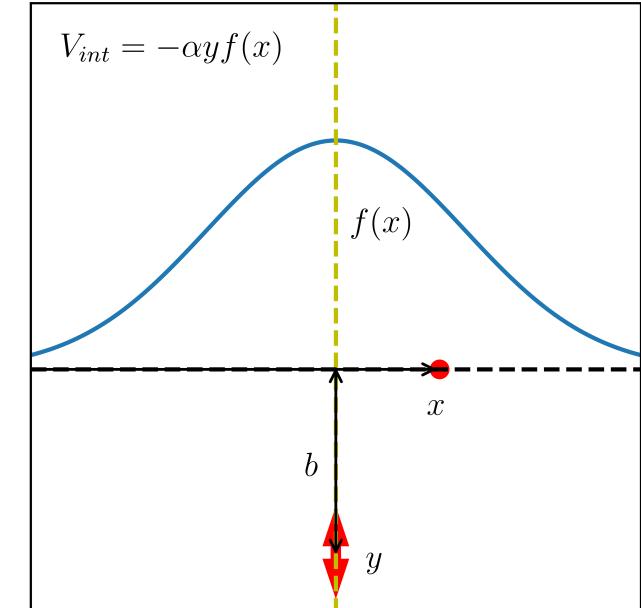


Image from Wikipedia

Quantizing Just the Oscillator

- Problem: Classical approach doesn't reflect experiment – **experiment only has *some* beam particles losing energy**
- Trial fix: Use a **classical beam**, and a **quantum oscillator**

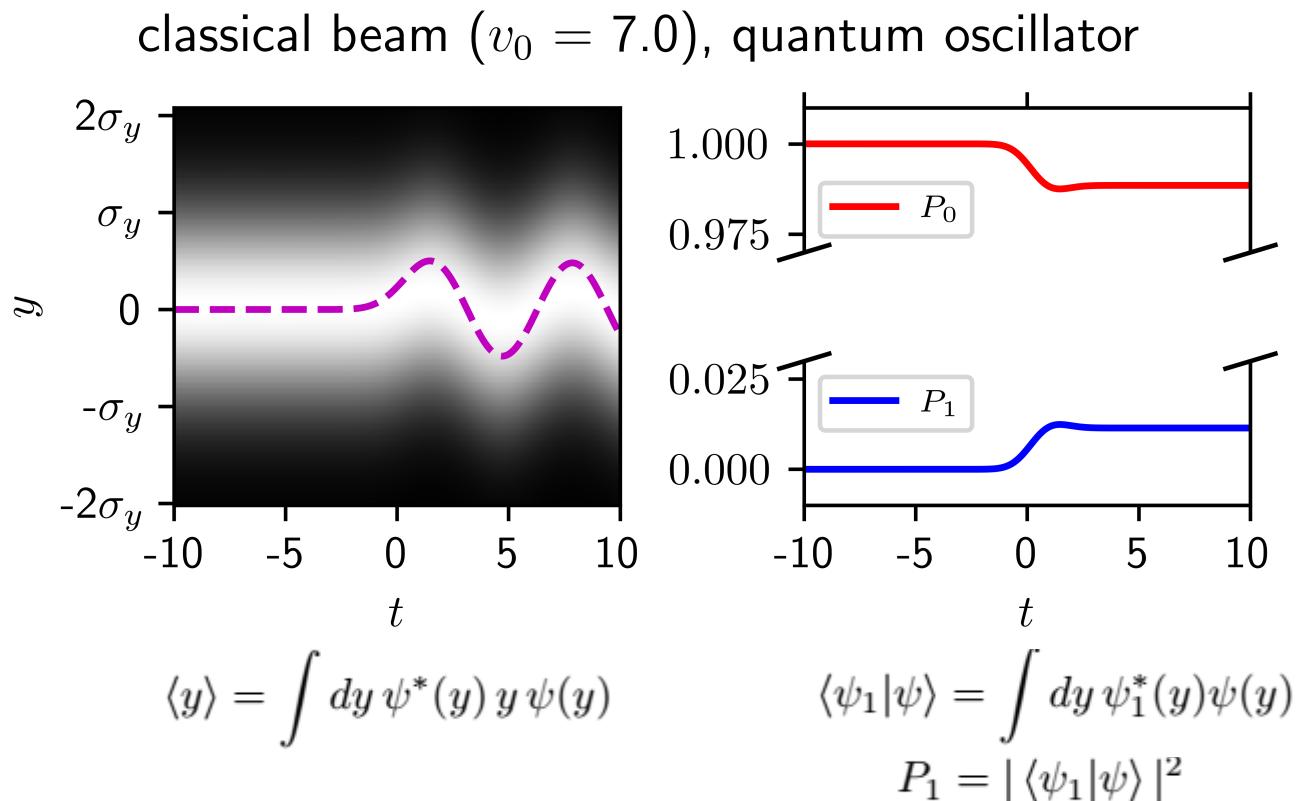
$$H = \underbrace{\frac{p_y^2}{2\mu} + \frac{1}{2}\omega_0^2\mu y^2}_{\text{unperturbed oscillator}} - \underbrace{\alpha y f(vt)}_{\text{time-dependent perturbation}}$$



Quantizing Just the Oscillator

- We can numerically integrate the Schrodinger equation

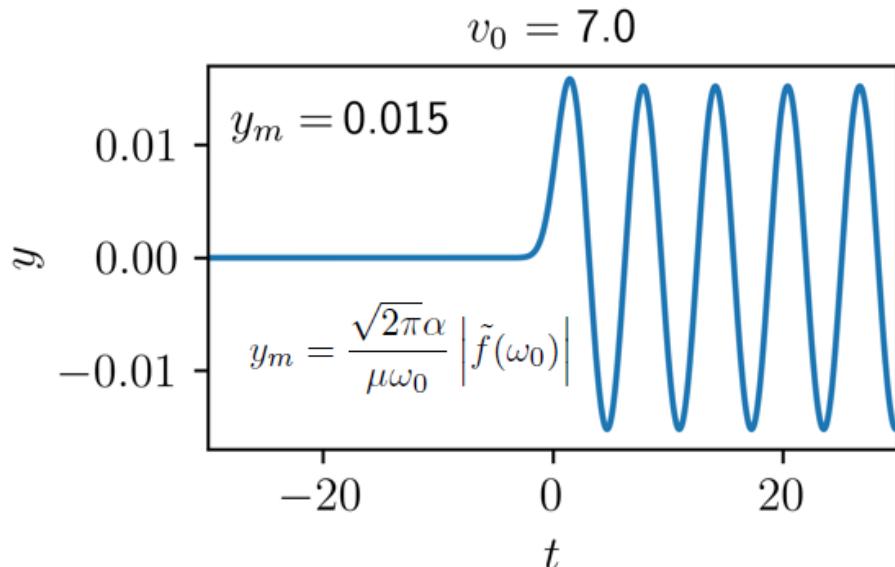
$$i\hbar \frac{\partial}{\partial t} \psi(y, t) = \hat{H}(t) \psi(y, t)$$



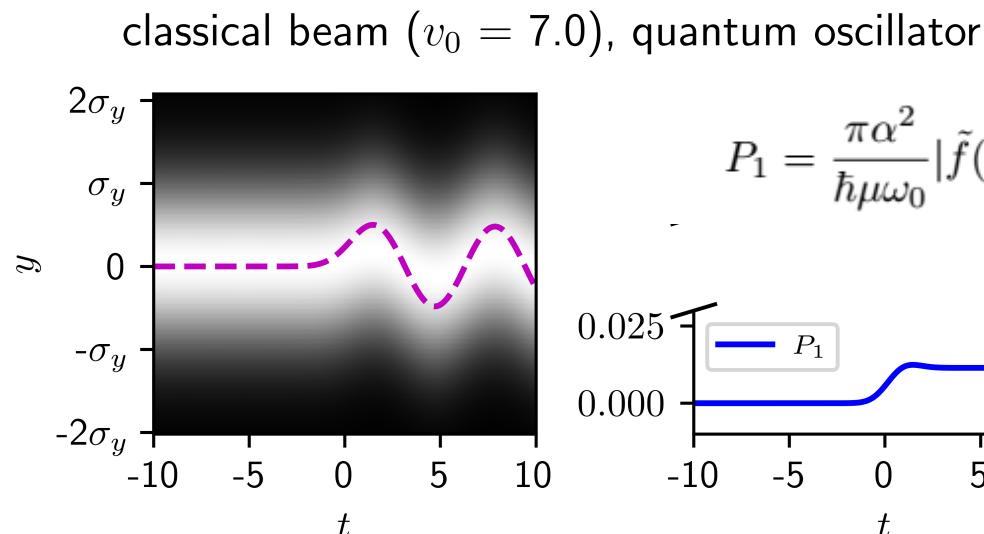
Classical vs. Partly Quantum Approaches

- The classical amplitude of the classical HO oscillator is proportional to the transition amplitude of the quantum HO

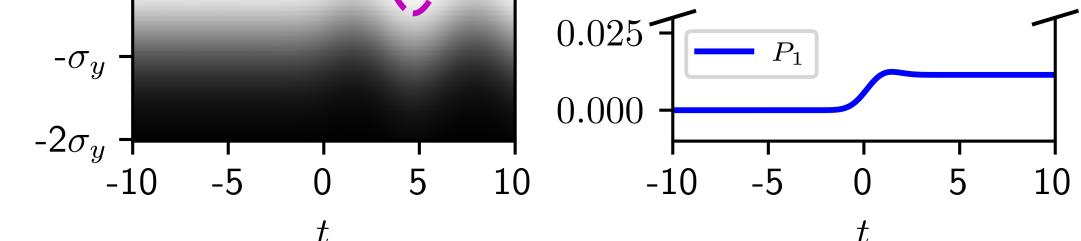
$$y_m = \sqrt{\frac{2\hbar}{\mu\omega}} P_1^{(1)}$$



$$P_1^{(1)} = \frac{\mu\omega_0}{2\hbar} y_m^2$$



$$P_1 = \frac{\pi\alpha^2}{\hbar\mu\omega_0} |\tilde{f}(\omega_0)|^2$$



Partly QM vs. Fully QM Approaches

- When will the **partly QM** approach match the fully QM one?

Partly QM Approach

$$i\hbar \frac{\partial}{\partial t} \psi(y) = \hat{H}(t) \psi(y)$$

$$\begin{aligned} \hat{H}(t) = & -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} \mu \omega_o^2 y^2 \\ & - \alpha y f(vt) \end{aligned}$$

Partly QM vs. Fully QM Approaches

- When will the **partly QM** approach match the **fully QM** one?

Partly QM Approach

$$i\hbar \frac{\partial}{\partial t} \psi(y) = \hat{H}(t) \psi(y)$$

$$\begin{aligned} \hat{H}(t) = & -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} \mu \omega_o^2 y^2 \\ & - \alpha y f(vt) \end{aligned}$$

Fully QM Approach

$$i\hbar \frac{\partial}{\partial t} \psi(x, y) = \hat{H} \psi(x, y)$$

$$\begin{aligned} \hat{H} = & -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - \frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} \mu \omega_o^2 y^2 \\ & - \alpha y f(x) \end{aligned}$$

Partly QM vs. Fully QM Approaches

- When will the partly QM approach match the fully QM one?

Partly QM Approach

$$i\hbar \frac{\partial}{\partial t} \psi(y) = \hat{H}(t) \psi(y)$$

$$\begin{aligned} \hat{H}(t) = & -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} \mu \omega_o^2 y^2 \\ & - \alpha y f(vt) \end{aligned}$$

Fully QM Approach

$$i\hbar \frac{\partial}{\partial t} \psi(x, y) = \hat{H} \psi(x, y)$$

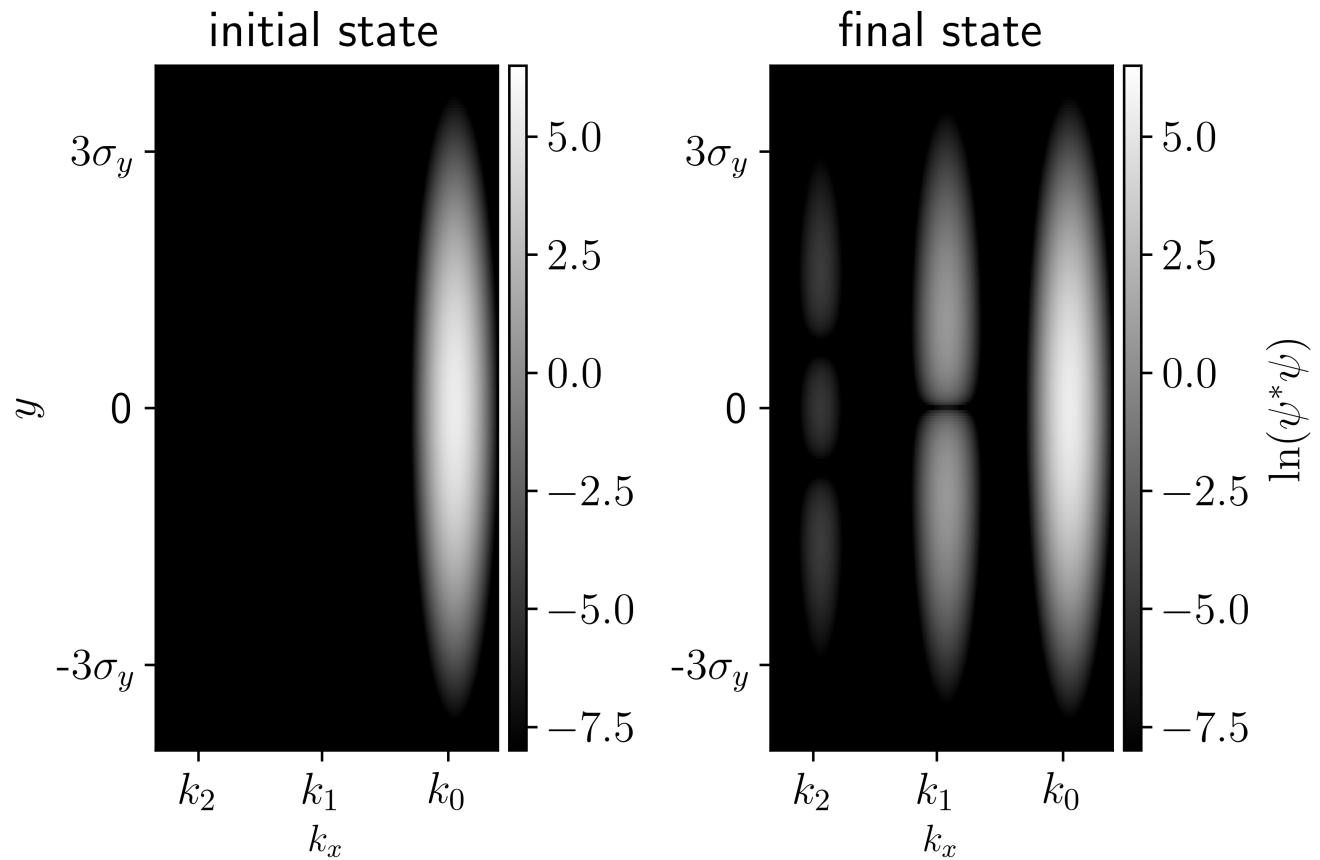
$$\begin{aligned} \hat{H} = & -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - \frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} \mu \omega_o^2 y^2 \\ & - \alpha y f(x) \end{aligned}$$

- Depends on the **relation between reduced and full wavefunction**

$$\psi(y) = \int dx \psi(x, y)$$

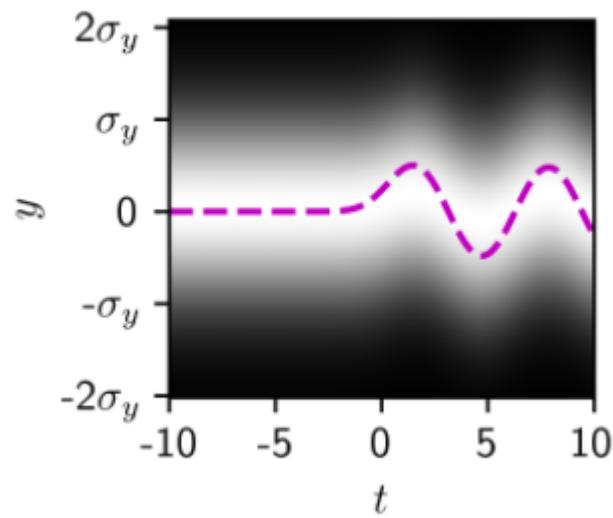
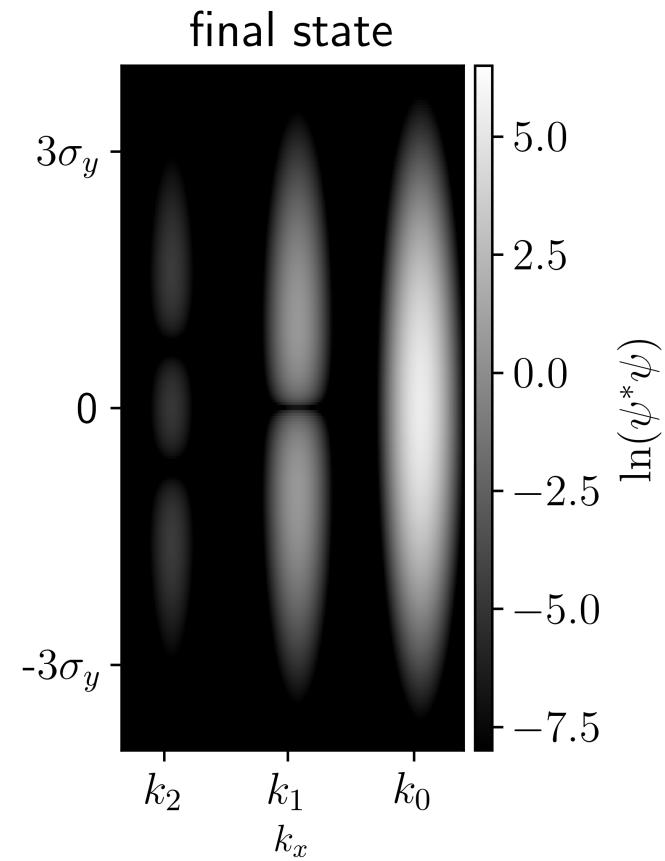
Imagining $\psi^*\psi$ in k_x and y

- The probability density of the **beam** **is entangled with** that of the oscillator



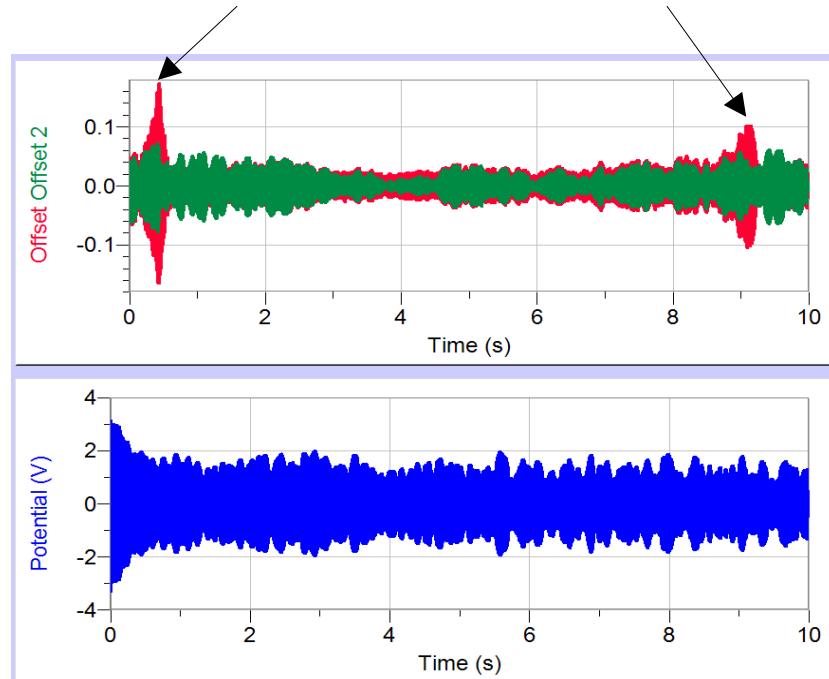
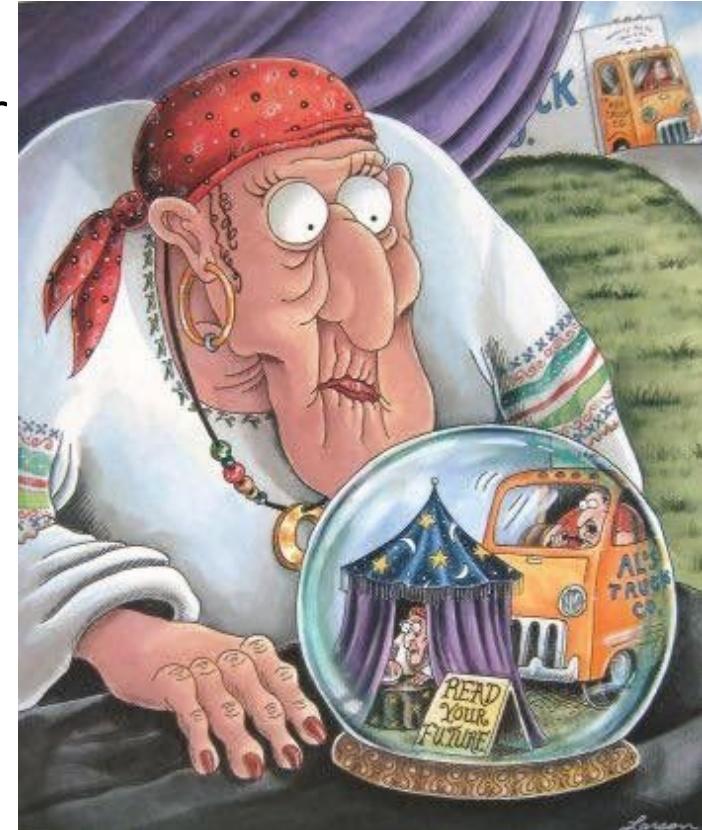
Imagining $\psi^*\psi$ in k_x and y

- The probability density of the beam is entangled with that of the oscillator
- **Thinking question:** how does this static density relate to the time-dependence of the reduced $\psi(y)$?



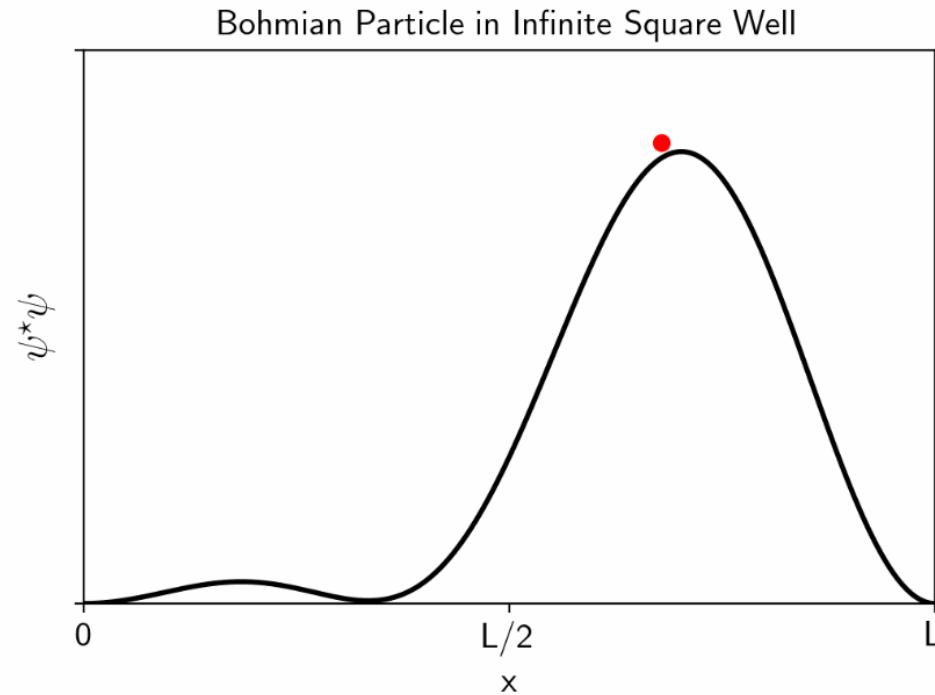
Future Projects?

- Lots of acoustical possibilities – from acoustical metamaterials to taking oscillator descriptions in a quantum direction



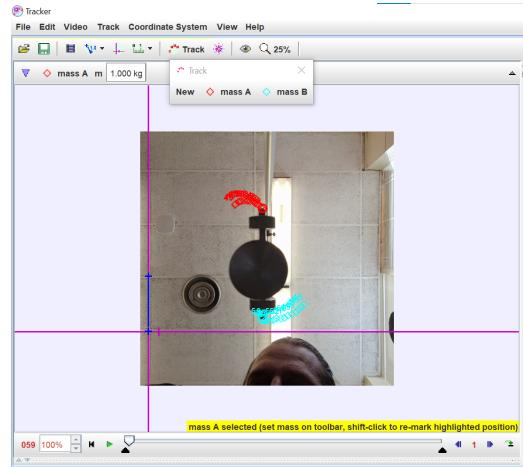
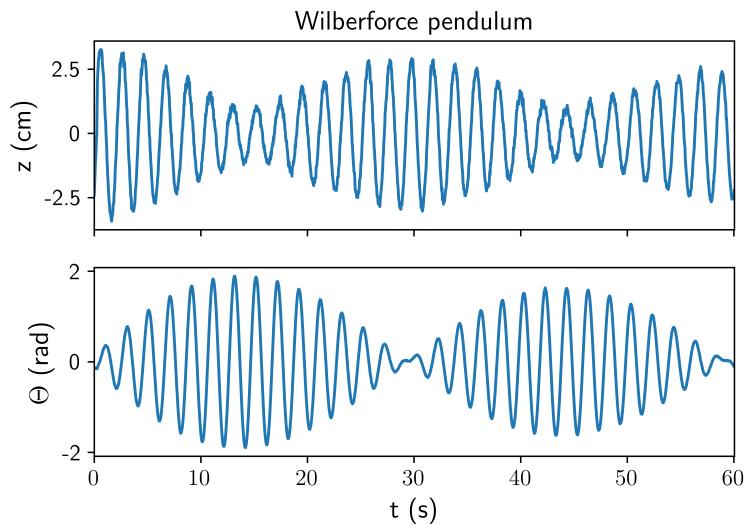
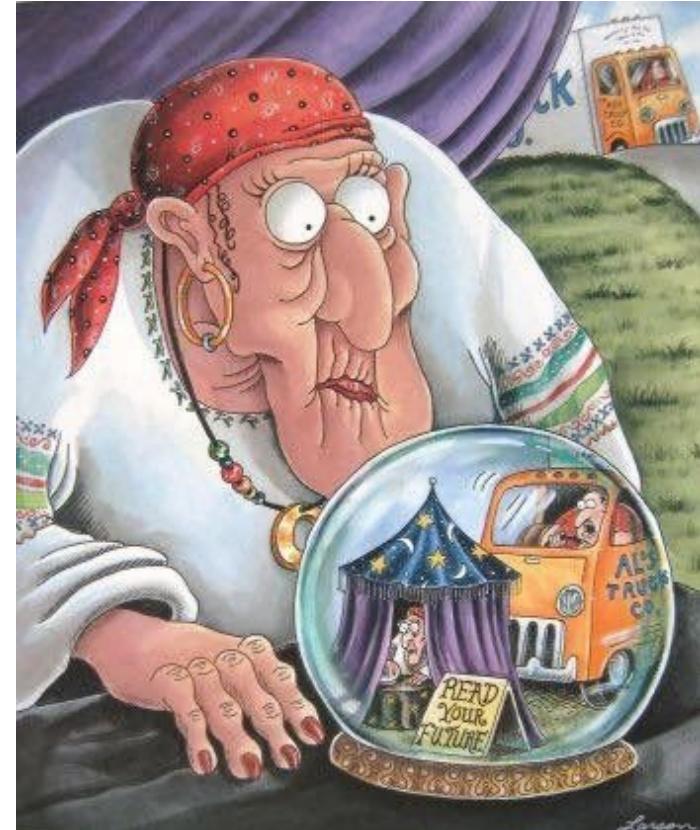
Future Projects?

- Quite a few “quantum fun” projects – from STEM-EELS modeling to exploring questions of quantum foundations



Future Projects?

- Video analysis with students is always fun!



Summary

- Same mathematical tools can often be used across many different physical scenarios
- Driven oscillators are a good description for many different oscillatory phenomena
- The classical and quantum versions of such models rhyme, but aren't the same