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Outline

e Physical models often apply across contexts
— An old favorite: the driven (damped) oscillator

e Applications of the driven oscillator
— Classical: acoustical resonance of a beer bottle
— Quantum: plasmonic resonance of a nanoparticle

« Compare/contrast classical + quantum problems
— Look at simplified oscillator problem



A favorite toy

e The harmonic oscillator maps onto many different
physical systems that oscillate
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https://en.wikipedia.org/wiki/Harmonic_oscillator
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A favorite toy .

F.=0
e The harmonic oscillator maps onto many different .
physical systems that oscillate "
e Two “tunable parameters” F
— Block mass m i=——u 1
—~ Spring stiffness k =0
« These variables control r = xq cos(wot — 9) ® ¥
oscillation frequency i = wpx
9 k x:% 0
— Wy = o From the Wikipedia

article on the HOs


https://en.wikipedia.org/wiki/Harmonic_oscillator

Engineering some reality

e The obvious next step: add a damping term

i+ 2B +wiz =0



Engineering some reality

e The obvious next step: add a damping term
i+ 2B +wiz =0

e Taylor’s “Classical Mechanics” gives solution as

2 x()

x(t) = Ae P! cos(wyr — 8).

W = \/a)j — B2.

(decay parameter) =

Figure 5.11  Underdamped oscillations can be thought of as sim-
ple harmonic oscillations with an exponentially decreasing amplitude
Ae~P'. The dashed curves are the envelopes, +-Ae 5.



Adding external force
e« One more step: add an external force

i+ 283 +wix = F(t)/m



Adding external force
e« One more step: add an external force

i+ 283 +wix = F(t)/m

e Problem: this can have many different solutions!
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Fourier transform of force and oscillations
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e Problem: t

Adding external force
e« One more step: add an external force

i+ 2Bt +wiz = F(t)/m
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Fourier transform of force and oscillations

o0

/

0

f(t)e " dt



e Problem: this can have many different solutions!

Adding external force
e« One more step: add an external force

i+ 283 +wix = F(t)/m

— F(®)
— x(?)

abs[F(w)]
abs[x(w)]

Fourier transform of force and oscillations

—+ o0

/

D_,C_'l

f(t)e "™“tdt



Green’s functions

e We want to connect solutions
i+ 283 4+ wir = F(t)/m



Green’s functions

e We want to connect solutions
i+ 283 4+ wir = F(t)/m

e One method: we can use a Green'’s function!
400
z(t) = Gt —t"F(t")dt'.

J —00



Green’s functions

e We want to connect solutions
i+ 283 4+ wir = F(t)/m

e One method: we can use a Green’s function!
+00
z(t) = G(t—t')F(t")dt'.

J —00

e Fourier transforms turn convolutions into products:
i(w) = G(w)F(w).
. —1/m
Glw) = (W2 — w?) — 2ifw




Green’s function of the DDO




Observations re:
the DDO Green’s funchon

 Amplitude greatest near w,

e G(w) produces position

oscillations in phase with Y —
the force at low frequency ﬂ

e G(w) produces position o
oscillations out of phase
with force at high frequency




Models across contexts

e The driven (damped) oscillator can help us understand
phenomena that span from classical to quantum

Classical: Quantum: nanorod plamons
beer bottle
acoustics

J




Abstraction preview...

e |'ll end the talk with a simple toy model,
contrasting classical and quantum approaches

H' = —ayf(z)
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Project 1: Measuring the acoustical

Green’s function of a beer bottle
e Pressure oscillations above a beer bottle act like DDOs

e Could we measure their associated Green’s function?
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— Im[G(w)]
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Background reading

An undergraduate experiment demonstrating the physics of

metamaterials with acoustic waves and soda cans @
James T. Wilkinson; Christopher B. Whitehouse; Rupert F. Oulton; Sylvain D. Gennaro
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Fig. 2. Experimental apparatus: (1) source (can plus loudspeaker); (2) can
under investigation; (3) receiver (loudspeaker used as microphone); (4) os-
cilloscope; (5) frequency generator; (6) microphone amplifier; (7) source
amplifier.



Helmholtz resonators

e Imagine an oscillating plug of
air in the resonator’s opening

e The force on the air plug
depends on...
— area of the opening
— internal volume of the resonator

e This yields a prediction for we:

{UOM

mVy

https://en.wikipedia.org/wiki/Helmholtz_resonance



Helmholtz resonators as DDOs

e fven if the beer bottle does not act as an ideal Helmholtz
resonator, the damped driven oscillator should basically apply

e Introduces resonance,
| damping, and coupling
= 1 i parameters

— P 58(t) = — wips(t) + 20Bwops(t) — 28pa(1).

,:." I_ | restoring driving damping
1 force force force




Setup —

ﬁl EE IJ
— = B
‘;.;.____. i =

e First, record sound without the —
bottle: : i —

speaker = —
e Next, record sound with the = o |
bottle to find its contribution: \ F =
pu(t) = ps(t) +ps(t). — W*F B
S S e
microphone speaker  bottle =



Experimental signal

e Easy to measure signal amplitude with and without the bottle
e By monitoring the speaker, we can also measure the phase shift
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Normalizing the signal
+ extracting fit parameters

e For pure tones,
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Big improvement over previous fit!
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Chirp signals

0.025 1
0.020 1 . '
oots. o o Chirp signals are easy to
i & generate using Audacity
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z(t) = sin |27 ( =% + fot
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f (Hz) _ fl — fl__]"
0.08 1 T
" ‘ o Chirp spectrum ranges from
0.04] absfle)] fo to f1 with a flattish
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Alternative experimental setup

e Use a chirp signal to extract DDO parameters efficiently

e An approximation: both
mics are driven by the
same background
signal, up to an
unknown time shift




Using the chirp:
Raw signal/response

e Blue: signal from the mic
without a bottle

e Red: signal from the mic
with a bottle

e Green: voltage driving the
passive speaker

Pres 1 Pres 2

(1.85,

0.2-

0.17

-0.085)

Potential (V)




Extracting Green’s function
from coherent measurement

e The details of 2- RelG(w)l 1 | abs|G(w)
finding G(w) liein - miee) T
the details of the L oo 1/

Fourier methods . :

-
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e Gives us both 3]
phase and 4
maghnitude! .
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Project 2: Plasmons in nanorods

 How can resonances be explored in mesoscopic systems?
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Mapping of surface
plasmon (SP) modes in gold
nano-antannae
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Quantum experimental setup:
Intro to STEM-EELS

e« STEM = Scanning Transmission Electron Microscope

i 4000
o—=—3 — TEM sample
==

3000
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==
' l J interban
L EELS system
i

| e EELS = Electron Energy-Loss
Spectroscopy

https://eels.info/about/overview



Understanding the Physics

e« The nanorod screens the beam’s electric field, and hence
contributes to the total electric field

e The nanorod’s electric field contribution does work on the
electron, causing the electron to slow




Born-Huang theory for ionic particles
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Born-Huang dielectric function

* Dielectric function
e(w) connects
input E-fields to
output E-fields

V-D=V.¢eE=V.-(E+47P) =0




armonic functions, -
narmonic frequencies
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* Introduce harmonic functions for a particular geometry
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Harmonic Frequencies

e To find the harmonic frequencies...

— 1. Scale harmonic functions

— 2. Find mode dielectric values

— 3. Find mode frequencies
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Harmonic Frequencies

e To find the harmonic frequencies...

— 1. Scale harmonic functions
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Wy

Harmonic Frequencies =

sphere

W

._Hl = any
e To find the harmonic frequencies...
— 1. Scale harmonic functions
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sphere

Harmonic Frequencies =

e To find the harmonic frequencies...

W

l_Hl = {"III}"
— 1. Scale harmonic functions

IEITITL X (T/CL)EPEm(COS 19) eXp(’Lmsp) B Wo 4

prolate spheroid ) oblate spheroid
om o< (a/r) LR (cos ) exp(imip) @ | — =0

— 2. Find mode dielectric values :
t
B 0 ¢‘;Lu | B _f +1 ) ,
€h = a ¢in €m = é “’I: cvlinder
1L %h  lsurface ,,_:____”_ _______ e,
- 3 Flnd mOde frequenCiES — () — c0sh modes
=== =] —=-==-sinh modes
3
2 2
c(wn) = ¢, mmmp o2, — lesow; + (0 + 1w > ‘
m leo + (£ + 1) . .




Sphere
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Cylinder
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Foil
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prolate spheroidal coordinates oblate spheroidal coordinates
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L-W. Li, X.-K. Kang, and M.-S. Leong, Spheroidal Wave Functions
in Electromagnetic Theory, John Wiley & Sons, 2002.



Prolate Spheroids

x = ccosh(p) cos(1}) 0 <p < o0
y = csinh(p) sin(9¥) cos(p) 0<9 <7

y
z = csinh(p) sin(¥) sin(p) 0<p <27 X
ol e=.900] ol e =900
0 1 1 1 AL AAL. 0 1 1 LAAW
135 140 145 150 155 160 135 140 145 150 155 160
x10° x10°
' ' ' ' ' A ' ' ' ' ' B
4t 1 at -
e =990 e = .990
2t 1 2t -
. 0 . .l AIAAA A . 0 .L Aoa s . .
1n m m N
Oyr, X P (cosh p) Py (cos ) exp(tmip) Jgs 140 145 150 155 160 135 140 145 150 155 160
out m m . L ' ' Ay 17 ' ' ' ' B
9 o Q' (cosh o) PY" (cos 9) exp(imip)
0.5+ e=.999 105} e =.999 .
0 AAA.AI\ L LA . 0 A . . L L
135 140 145 150 155 160 135 140 145 150 155 160

hw (meV) hw (meV)




Prolate Spheroids
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= ccosh(p) cos(¥)
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oblate spheroid

——-m=1

——m=0| ]

1.5

0.5t

O N b O @

Oblate Spheroids

X

B.
e = .900 ol e =.900 |

1 1 1 1 n 0 1 1 n I
1%5 140 145 150 155 160 1%5 140 145 150 155 160

x10° x10°
' ' B
.A 8 L 4
e = .990 6 — 990 |
| e =. 4 | e =. ]
hm 2]

. L L . 0 . Arn . .

135 140 145 150 155 160 135 140 145 150 155 160
%107 %10
A ' B
115¢ ]
Fe = .999 1t e =.999 1
l 105 L

. . A.AAAA . 0 JAAA. X X .

135 140 145 150 155 160 135 140 145 150 155 160
hw (meV) hw (meV)




prolate spheroid
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What are the surface states like?

prolate spheroid

hwh

——-m=

* Cosh-like states
* Low energy
* Strongly scattering
* Low density-of-states




What are the surface states like?

prolate spheroid

hwh

——-m=

* Sinh-like states
* High energy
* Weakly scattering
* Low density-of-states




What are the surface states like?

prolate spheroid cylinder

* States with e¢(w) =-1
o * Mid-range energy
) here * Weakly scattering
— * High density-of-states
——-m=1
§ wy 7 Wo )
= " oblate spheroid " foil
S - - in out
y _m:any CX/\W ® When h, > _¢h ‘Surface,
f | the electric field is
determined by local surface
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——smmees| | Charge, and the surfaces are

‘ ° ¢ approximately decoupled



Prolate Spheroids as Lightning Rods

prolate spheroids
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Project 3: Classical-Quantum Comparison

e Let’s capture this with a 1D model: Vit = —ayf (2)
— 1D beam (variable: x, mass: m)

— 1D oscillator (variable: y, mass: u,
angular frequency: wo) f(z)

e The Hamiltonian is straightforward:

:* _________
2 2 v
p 1
H:é?—m+2—y+§w(2)ﬂyz—@yf(ﬂf) b
m \kﬂ ) N —

b N interaction Y
caln oscillator




Background Reading
e Explicitillustration: two 1D particles trapped in a box
e Example on the right is “entangled” — can’t factor it!

LT LRy TLY .2 . [(3my 1. (3 . [ 2my

ﬂ_/

L

Entanglement isn't just for spin

Daniel V. Schroeder

B
|- -

'.) Check for updates

—_—=

Am. J. Phys. 85, 812-820 (2017)
https://doi.org/10.1119/1.5003808




Entanglement and Inelastic Scattering

e Entanglement in scattering situations arises naturally from
the interaction between the “beam” and the “target”

— |1) ® |0)

[100) @ |0) mmd ] — (1) @ [1)

lllustration by Christian Dwyer, in a review article
“Atomic-Resolution Core-Level Spectroscopy
in the Scanning Transmission Electron Microscope”


https://www.sciencedirect.com/science/article/abs/pii/B9780124076709000032

Consequences of the Full Classical Model

2
: : . R ¥ 1
e We can find classical equations of H=2% 4 20 — ay f(x)
motion for each variable S~ ~———— interaction
. fff oscillator
mi = “HE Vit = —ozyf(x)
pij = —pwiy + af (x)
f(z)
:” —————————
i
b
Y




Consequences of the Full Classical Model

e We can find classical equations of
motion for each variable
) df
mir = oy —
da

wij = —uedy + af ()

e When the beam travels swiftly
(x = vot), a predictable amount of
energy is transferred from beam to
oscillator (assuming it starts at rest)

p: p, 1 2 9
= o=+ 5o+ swny — ay f(2)
om | 2u 2 A
v b ~~ interaction
beam oscillator
‘/int — —&yf(x)




Classical Oscillations

 Final amplitude depends directly on model and initial conditions

vg = 1.0 vg = 3.0
0.01 - Ym = 0.0 ym = 0.004
. df = 0.00 —/\ M
mi = oy —
dx
) ) —0.01 -
jij = —pwyy + af(x)
Vo = 7.0 Vo = 10.
0.1 | vm =0015 /\ \ NP e =00
fx) = b2/ = 0.00 /\/\/\/\/\
—0.01 - U U U U \‘
20 20 20 0 20

t



Quantum Harmonic Oscillator

A LX)
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e States of the QHO look
like trapped waves

Image from Wikipedia



Quantizing Just the Oscillator

e Problem: Classical approach doesn’t reflect experiment —
experiment only has some beam particles losing energy

e Trial fix: Use a classical beam, and a quantum oscillator

2 ‘/im‘, - _ayf<x)
Py 1 5 5
H=20 4 a2 aysn)
20 2 ——’
h " “  time-dependent
unperturbed perturbation f(z)

oscillator




Quantizing Just the Oscillator

o We can numerically integrate the Schrodinger equation

classical beam (v = 7.0), quantum oscillator

1.000 N
—_— P,
0.975 4 L
0 - ,
ih@@'(?ﬁ t) = H(t)v(y.1)
0025 , g
0.000 S
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Classical vs. Partly Quantum Approaches

e The classical amplitude of the classical HO oscillator is
proportional to the transition amplitude of the quantum HO

pY = Hwo o

2h
Ym _Pl(l)
Hw
Vg = 7.0
= 0.00
21 ~
—0.01 - Ym = ﬁ] f(w'f}}‘

classical beam (vg

= 7.0), quantum oscillator
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Partly QM vs. Fully QM Approaches

e When will the partly QM approach match the fully QM one?

Partly QM Approach

0 A
zﬁaw(y) = H(t)Y(y)
H(t) = — 9 D12 A

— ayf(vt)



Partly QM vs. Fully QM Approaches

e When will the partly QM approach match the fully QM one?

Partly QM Approach Fully QM Approach
., 0 - ., 0 .
maw(y) = H(t)v(y) ih (. y) = Hy(,y)
) B2 92 1 5, -~ h* 9 R 1 4,
H(t) = - 20 Oy? T o HWol  2mOx? 2u 0y? T oY

— ay f(vt) —ayf(x)



Partly QM vs. Fully QM Approaches

e« When will the partly QM approach match the fully QM one?

Partly QM Approach Fully QM Approach
., 0 . 0 .
ih=-1(y) = H(t)¥(y) ih (. y) = Hy(,y)
: h* 9* 1 5 A R
H(t) = — ﬂ(‘)—yQ T o H¥ol  2mOx? 2u 0y? T g 1ol
— ay f(vt) —ayf(z)

e Depends on the relation between reduced and full wavefunction

ww—/Mme



Imagining Y*Yin k, and y

initial state

e The probability
density of the beam 30y
is entangled with
that of the oscillator

9.0

-2.5

3oy

final state




Imagining Y*Y in k, and y

final state

e The probability
density of the beam 30,

is entangled with 20y
that of the oscillator oy
e Thinking question: = 0 a 0
how does this static 7,
density relate to the 20,
time-dependence of -0 5 0 5 10

the reduced Y(y)? ’




Future Projects?

e Lots of acoustical possibilities — from
acoustical metamaterials to taking oscillator
descriptions in a quantum direction

<

Offset Offset 2
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Future Projects?

e Quite a few “quantum fun” projects — from
STEM-EELS modeling to exploring questions P& 4
of quantum foundations '

Bohmian Particle in Infinite Square Well

(s

0 L/2 L



Future Projects?

e Video analysis with students is always fun!

@) Tracker - 8 x

ile Edit Video Track Coordinate System View Help
S H| B wr ot Srask d | @ Qasy | £-B|me
¥ O massA m|1000kg  Track p e lesv‘ o massA‘vl [Clsyne -
mass A (t, x)
20
315
* 1.0,
o s 0 15 2 2 0 3 40 45 50 55 @
t=2.141s x=1.294m '®
mass A (t, y)
15
10
2
05
0 5 10 15 20 25 30 35 40 45 50 55 €0
= s y=1.410m '©
Wilberforce pendulum
1 highiighted position)
2 @

0 10 20 30 10 50 60



Summary

e Same mathematical tools can
often be used across many
different physical scenarios

THE e Driven oscillators are a good
description for many different
D oscilliatory phenomena
e The classical and quantum

versions of such models
rhyme, but aren’t the same
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