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Outline
● Physical models often apply across contexts

– An old favorite: the driven (damped) oscillator
 

● Applications of the driven oscillator
– Classical: acoustical resonance of a beer bottle
– Quantum: plasmonic resonance of a nanoparticle

● Compare/contrast classical + quantum problems
– Look at simplified oscillator problem



  

A favorite toy
● The harmonic oscillator maps onto many different 

physical systems that oscillate

From the Wikipedia 
article on the HOs

https://en.wikipedia.org/wiki/Harmonic_oscillator
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A favorite toy
● The harmonic oscillator maps onto many different 

physical systems that oscillate

● Two “tunable parameters”
– Block mass m
– Spring stiffness k

● These variables control 
oscillation frequency

From the Wikipedia 
article on the HOs

https://en.wikipedia.org/wiki/Harmonic_oscillator


  

Engineering some reality
● The obvious next step: add a damping term



  

Engineering some reality
● The obvious next step: add a damping term

● Taylor’s “Classical Mechanics” gives solution as



  

Adding external force
● One more step: add an external force

 



  

Adding external force
● One more step: add an external force

● Problem: this can have many different solutions! 

Fourier transform of force and oscillations
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Fourier transform of force and oscillations

Adding external force
● One more step: add an external force

● Problem: this can have many different solutions! 



  

● We want to connect solutions 
Green’s functions



  

Green’s functions
● We want to connect solutions 

● One method: we can use a Green’s function!



  

Green’s functions
● We want to connect solutions 

● One method: we can use a Green’s function!

● Fourier transforms turn convolutions into products:



  

Green’s function of the DDO



  

Observations re:
the DDO Green’s function

● Amplitude greatest near ω0

● G(ω) produces position 
oscillations in phase with 
the force at low frequency

● G(ω) produces position 
oscillations out of phase 
with force at high frequency



  

Models across contexts
● The driven (damped) oscillator can help us understand 

phenomena that span from classical to quantum

Classical: 
beer bottle 
acoustics

Quantum: nanorod plamons



  

Abstraction preview...
● I’ll end the talk with a simple toy model, 

contrasting classical and quantum approaches



  

Project 1: Measuring the acoustical 
Green’s function of a beer bottle

● Pressure oscillations above a beer bottle act like DDOs
● Could we measure their associated Green’s function?



  

Background reading



  

Helmholtz resonators
● Imagine an oscillating plug of 

air in the resonator’s opening
● The force on the air plug 

depends on…
– area of the opening 
– internal volume of the resonator

● This yields a prediction for ω0:
 

https://en.wikipedia.org/wiki/Helmholtz_resonance



  

Helmholtz resonators as DDOs
● Even if the beer bottle does not act as an ideal Helmholtz 

resonator, the damped driven oscillator should basically apply

● Introduces resonance, 
damping, and coupling  
parameters 



  

Setup

● First, record sound without the 
bottle:

● Next, record sound with the 
bottle to find its contribution:



  

Experimental signal
● Easy to measure signal amplitude with and without the bottle
● By monitoring the speaker, we can also measure the phase shift



  

Normalizing the signal 
+ extracting fit parameters

● For pure tones,

● Normalized amplitudes and 
phase shifts are fit well by 
DDO model  



  

Big improvement over previous fit!



  

Chirp signals
● Chirp signals are easy to 

generate using Audacity

● Chirp spectrum ranges from 
f0 to f1 with a flattish 
amplitude 



  

Alternative experimental setup
● Use a chirp signal to extract DDO parameters efficiently

● An approximation: both 
mics are driven by the 
same background 
signal, up to an 
unknown time shift



  

Using the chirp:
Raw signal/response

● Blue: signal from the mic 
without a bottle

● Red: signal from the mic 
with a bottle

● Green: voltage driving the 
passive speaker



  

Extracting Green’s function 
from coherent measurement

● The details of 
finding G(ω) lie in 
the details of the 
Fourier methods

● Gives us both 
phase and 
magnitude! 



  

Project 2: Plasmons in nanorods
● How can resonances be explored in mesoscopic systems?

Images are courtesy
of Christian Dwyer SP mode 1Zero loss SP mode 2 SP mode 3

Spectrum imaging of Au 
nanorod (60 kV, 
100 msec, 5 meV/ch)

20 nm

Mapping of surface 
plasmon (SP) modes in gold 
nano-antannae



  

Quantum experimental setup:
Intro to STEM-EELS

● STEM = Scanning Transmission Electron Microscope

● EELS = Electron Energy-Loss            
                          Spectroscopy

https://eels.info/about/overview



  

Understanding the Physics
● The nanorod screens the beam’s electric field, and hence 

contributes to the total electric field
● The nanorod’s electric field contribution does work on the 

electron, causing the electron to slow



Born-Huang theory for ionic particles

(Image by 
Christian Dwyer)



Born-Huang dielectric function
● Dielectric function 

ϵ(ω) connects 
input E-fields to 
output E-fields



• Introduce harmonic functions for a particular geometry 

Harmonic functions, 
harmonic frequencies

Example geometry: Sphere

Illustration by
Jacob Hollebon



  

Harmonic Frequencies
● To find the harmonic frequencies…

– 1. Scale harmonic functions

– 2. Find mode dielectric values

– 3. Find mode frequencies 
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Harmonic Frequencies
● To find the harmonic frequencies…

– 1. Scale harmonic functions

– 2. Find mode dielectric values

– 3. Find mode frequencies 









L.-W. Li, X.-K. Kang, and M.-S. Leong, Spheroidal Wave Functions 
in Electromagnetic Theory, John Wiley & Sons, 2002.













What are the surface states like?
• Cosh-like states
• Low energy
• Strongly scattering
• Low density-of-states



What are the surface states like?

• Sinh-like states
• High energy
• Weakly scattering
• Low density-of-states



What are the surface states like?
• States with          ≈ -1
• Mid-range energy
• Weakly scattering
• High density-of-states

• When                                     , 
the electric field is 
determined by local surface 
charge, and the surfaces are 
approximately decoupled



  

Prolate Spheroids as Lightning Rods

SP mode 1 SP mode 2 SP mode 3



  

Project 3: Classical-Quantum Comparison
● Let’s capture this with a 1D model:

– 1D beam (variable: x, mass: m)
– 1D oscillator (variable: y, mass: µ,

angular frequency: ω0)

● The Hamiltonian is straightforward:



  

Background Reading
● Explicit illustration: two 1D particles trapped in a box
● Example on the right is “entangled” – can’t factor it!



  

Entanglement and Inelastic Scattering
● Entanglement in scattering situations arises naturally from 

the interaction between the “beam” and the “target”

Illustration by Christian Dwyer, in a review article
“Atomic-Resolution Core-Level Spectroscopy 

in the Scanning Transmission Electron Microscope”

https://www.sciencedirect.com/science/article/abs/pii/B9780124076709000032


  

Consequences of the Full Classical Model
● We can find classical equations of 

motion for each variable



  

Consequences of the Full Classical Model
● We can find classical equations of 

motion for each variable

● When the beam travels swiftly 
(x ≈ v0t), a predictable amount of 
energy is transferred from beam to 
oscillator (assuming it starts at rest)



  

Classical Oscillations
● Final amplitude depends directly on model and initial conditions



  

Quantum Harmonic Oscillator

● States of the QHO look 
like trapped waves

Image from Wikipedia



  

Quantizing Just the Oscillator
● Problem: Classical approach doesn’t reflect experiment – 

experiment only has some beam particles losing energy
● Trial fix: Use a classical beam, and a quantum oscillator



  

Quantizing Just the Oscillator
● We can numerically integrate the Schrodinger equation 



  

Classical vs. Partly Quantum Approaches
● The classical amplitude of the classical HO oscillator is 

proportional to the transition amplitude of the quantum HO



  

Partly QM vs. Fully QM Approaches

Partly QM Approach

● When will the partly QM approach match the fully QM one?
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● When will the partly QM approach match the fully QM one?



  

Partly QM vs. Fully QM Approaches
● When will the partly QM approach match the fully QM one?

● Depends on the relation between reduced and full wavefunction

Partly QM Approach Fully QM Approach



  

Imagining Ψ*Ψ in kx and y 
● The probability 

density of the beam 
is entangled with 
that of the oscillator



  

● The probability 
density of the beam 
is entangled with 
that of the oscillator

● Thinking question: 
how does this static 
density relate to the 
time-dependence of 
the reduced Ψ(y)?

Imagining Ψ*Ψ in kx and y 



  

Future Projects?
● Lots of acoustical possibilities – from 

acoustical metamaterials to taking oscillator 
descriptions in a quantum direction



  

Future Projects?
● Quite a few “quantum fun” projects – from 

STEM-EELS modeling to exploring questions 
of quantum foundations



  

Future Projects?
● Video analysis with students is always fun!



  

Summary
● Same mathematical tools can 

often be used across many 
different physical scenarios

● Driven oscillators are a good 
description for many different 
oscilliatory phenomena

● The classical and quantum 
versions of such models 
rhyme, but aren’t the same
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