%“ Department
of Physics

ARIZONA STATE UNIVERSITY

Harnessing Shape Effects for Adsorbate Signal

Enhancement in Vibrational EELS

David Kordahl
Christian Dwyer
August 6, 2019

Phys. Rev. B 99, 104110 (2019)



» Shape effects and surface modes in EELS
» Coupling a surface molecule to surface modes
* Quantifying the molecular signal enhancement

* On- and off-resonance driven molecular signals



Shape effects and surface modes




Born-Huang and Drude dielectric functions
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Born-Huang and Drude dielectric functions

Born-Huang
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dielectric function:
w(w + 2in) — wy

w(w + 2in) — wi

€(w) = €xo

. *Born-Huang becomes
Drudg dielectric when
€EcolWy — Wp, Wy — 0

“~ *For frequencies
where the dielectric
function is negative,
particles can support
harmonic modes
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Simplest example: sphere
1. Scale harmonic functions
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Simplest example: sphere
1. Scale harmonic functions
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Simplest example: sphere
1. Scale harmonic functions
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2. Find mode dielectric values
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Coupling the electron beam to harmonic modes




Coupling the electron beam to harmonic modes

An electron beam followinf z = vt
has the electronic potentia
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where ho .
> .
[h(x7w) — / ? ¢zut (X, Z) esz/fU.

— 00




Coupling the electron beam to harmonic modes

An electron beam followinf z = vt
has the electronic potentia

P (r,w) = Z —eCLo™ (v) I (x, w)’
where o .
hcw) = [ Tz e
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Finding the induced potential of
the particle and integrating the
work it does on the beam yields
the nanoparticle EEL spectrum:
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prolate spheroids

Test case:
prolate spheroids §
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Prolate spheroids as “lightning rods*’

\ / AR =1 AR = 10
N N\

For long needle-like geometries in the presence of a beam

* from screening, the beam potential is deformed most at the tip —
the induced field is largest near the nanoparticle tip

* the internal electric field is weak for modes with charge at tips —
harmonic frequencies for these antenna modes are low




Surface molecules and surface modes
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Adsorbate as a Born-Huang dipole

We choose to model the adsorbate as a Born-Huang dipole
constrained to vibrate along the surface normal:
2
i B(w) = (@ — wlw +207)) pl)

This dipole potential can be expanded in modes:




Molecular contributions to the EEL spectrum

Self-consistent boundary conditions for the nanoparticle lead
to an extra spectrum term, beyond that of the nanoparticle:

P dp B,
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The extra term depends on three ancillary functions, each
of which has a clear physical interpretation:
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Physics of the coupled dipole model: excitation

1. The electric field of the beam and the induced electric
field from the particle both push on the molecule

En(w) = Z eCplp(x,w) (W (rm) — ap(w)ud(ry)) - 0
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Physics of the coupled dipole model: redshift

2. The molecular dipole couples to its own image dipole,
and this serves to redshift its spectral signal
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Physics of the coupled dipole model: EEL signal

3. The electric field of the molecule and the induced
electric field from the molecule both pull on the beam

Ee(w) =) eCplp(,w) (W (rm) — on(w)83™ (rm)) - i
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Quantifying the molecular signal
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Near and “ultra-remote”? probes

The molecular signal
depends on the electric
field at the surface
adsorption site
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Near and “cultra-

remote* probes (2)
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Off- and on-resonant enhancement
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Uncovering Fano-type line shapes

In the vicinity of the molecular frequency, use
En(w) = |En(w!)| exp(i6m) 5—p 9
Be(w) — |Belel)| explie) m

and expand the molecular contribution to the spectrum
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around the molecular frequency 2 = (w — wl,)/>’
to uncover the model's possible Fano-type line shapes
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Uncovering Fano-type line shapes

In the vicinity of the molecular frequency, use
En(w) = [Em(wiy)| exp(i0m)
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and expand the molecular contribution to the spectrum
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Lineshapes for “off? and “on?’ resonance (1)

0 = 6m + 0
0=0 || d=mx/2

de —L

dw

-7
Ao 0 0 0 0|, 0 D) 128
“off resonance”

APy _ 1 ¢* |Bun(why) Be(wla) (cos(é)-ﬂsin@) T
1+ Q2 48— 1 |

><103 2 =

dP dpP, L0~ 0
dw dw
1 i
|
@V
0 00— '

dw ,u, mh 2w!_




Lineshapes for “off? and “on?’ resonance (2)

d =6, + 6. Q= (w—w)/y “on resonance”

5=0 |[6=x/2| 6= |[6=3x/2|] 5=2r | (inpractice)

dfy, 2 L N/ L__ v
dw \/ v 1073 ©

0 () + 0 0 0 2.5 |EyE. : )
“on resonance” (in theory) ,
dPy 1 ¢° |En(w))Ee(w),)] (005(5) — Qsin((S)) 2 '
~ ’ A~ 2 I 0
dw umh 2w! 1 + () 105 ()

0.01} dp -

0.005 |

o,
€

N O N & O
o,
o,
E‘QU

0 N -
1 2 3 “m .55




An analogy: damped oscillators and phase shifts

amplitude

2t

0

phase

One can picture each mode response as a damped harmonic
oscillator—driving another damped harmonic oscillator

* Directly on resonance, a single mode phase shift is /2 + /2 = &

* Far above or far above the resonance, the phase shift — 0, 2x

Typically, cumulative phase-shift effects make the line shape
difficult to predict when all modes are included




Large enhancements for tuned particles—

and some different line shapes
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When particle
surface mode
frequencies
overlap the
vibrational
frequency of
the adsorbate,
we find large
signal and SNR
enhancements




Conclusion

 We have given a plausible mechanism for the plasmon-
enhanced vibrational EELS of adsorbates

* Adsorbate signal enhancement is mediated via the site-
specific strength of the electric field (x E°)

* Thin, sharp nanoparticles deliver can deliver large
electric fields with low background signal, leading to large
signal and SNR enhancement for adsorbates

» Surface mode frequencies overlapping the adsorbate
vibrational frequencies give signal enhancements of 102-103
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