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Summary

● Shape effects and surface modes in EELS

● Coupling a surface molecule to surface modes

● Quantifying the molecular signal enhancement
 

● On- and off-resonance driven molecular signals
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Shape effects and surface modes
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Born-Huang and Drude dielectric functions

*Born-Huang (Lorentz) 
dielectric function:
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Born-Huang and Drude dielectric functions

*Born-Huang becomes 
Drude dielectric when

*Born-Huang (Lorentz) 
dielectric function:
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Born-Huang and Drude dielectric functions

*For frequencies 
where the dielectric
function is negative,
particles can support 
harmonic modes
               

*Born-Huang becomes 
Drude dielectric when

*Born-Huang (Lorentz) 
dielectric function:
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Harmonic frequencies for regular geometries

Simplest example: sphere

1. Scale harmonic functions
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Harmonic frequencies for regular geometries

Simplest example: sphere

1. Scale harmonic functions

2. Find mode dielectric values
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Harmonic frequencies for regular geometries

Simplest example: sphere

1. Scale harmonic functions

2. Find mode dielectric values

3. Find mode frequencies
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Coupling the electron beam to harmonic modes
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Coupling the electron beam to harmonic modes

An electron beam following
has the electronic potential 
 

                              ,
where 

                                                       .     
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Coupling the electron beam to harmonic modes

An electron beam following
has the electronic potential 
 

                              ,
where 

                                                       .     

Finding the induced potential of 
the particle and integrating the 
work it does on the beam yields 
the nanoparticle EEL spectrum:

,                     .
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Test case: 
prolate spheroids
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Prolate spheroids as “lightning rods”

For long needle-like geometries in the presence of a beam

* from screening, the beam potential is deformed most at the tip  → 
the induced field is largest near the nanoparticle tip 

* the internal electric field is weak for modes with charge at tips → 
harmonic frequencies for these antenna modes are low
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Surface molecules and surface modes
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Adsorbate as a Born-Huang dipole

We choose to model the adsorbate as a Born-Huang dipole 
constrained to vibrate along the surface normal:

                                                 

This dipole potential can be expanded in modes:

                           
                                                     
where
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Molecular contributions to the EEL spectrum

Self-consistent boundary conditions for the nanoparticle lead 
to an extra spectrum term, beyond that of the nanoparticle:

The extra term depends on three ancillary functions, each 
of which has a clear physical interpretation:
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Physics of the coupled dipole model: excitation

1. The electric field of the beam and the induced electric 
field from the particle both push on the molecule

nanoparticle
polarizability
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Physics of the coupled dipole model: redshift

2. The molecular dipole couples to its own image dipole, 
and this serves to redshift its spectral signal
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Physics of the coupled dipole model: EEL signal

3. The electric field of the molecule and the induced 
electric field from the molecule both pull on the beam

nanoparticle
polarizability
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Quantifying the molecular signal
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Near and “ultra-remote” probes

The molecular signal 
depends on the electric 
field at the surface 
adsorption site

so the beam does not 
necessarily need to be 
near the sample to find
a molecular signal

Even modes are 
the same on both
sides of spheroid

Odd modes may 
differ on sides of 
spheroid by sign
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Near and “ultra-
remote” probes (2)

The molecular signal 
depends on the electric 
field at the surface 
adsorption site

so the beam does not 
necessarily need to be 
near the sample to find
a molecular signal
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Off- and on-resonant enhancement
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Uncovering Fano-type line shapes

In the vicinity of the molecular frequency, use

 

and expand the molecular contribution to the spectrum 

 
 

around the molecular frequency 
to uncover the model's possible Fano-type line shapes
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Uncovering Fano-type line shapes

In the vicinity of the molecular frequency, use

 

and expand the molecular contribution to the spectrum 

 
 

around the molecular frequency 
to uncover the model's possible Fano-type line shapes
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Lineshapes for “off” and “on” resonance (1)

“off resonance”

“off resonance”
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Lineshapes for “off” and “on” resonance (2)

“on resonance”
(in practice)

“on resonance” (in theory)
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An analogy: damped oscillators and phase shifts

One can picture each mode response as a damped harmonic 
oscillator—driving another damped harmonic oscillator

 

* Directly on resonance, a single mode phase shift is π/2 + π/2 = π

* Far above or far above the resonance, the phase shift  0, 2→ π

Typically, cumulative phase-shift effects make the line shape 
difficult to predict when all modes are included
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Large enhancements for tuned particles—
and some different line shapes

When particle 
surface mode 
frequencies 
overlap the 
vibrational 
frequency of 
the adsorbate, 
we find large 
signal and SNR 
enhancements
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Conclusion

● We have given a plausible mechanism for the plasmon-
enhanced vibrational EELS of adsorbates

● Adsorbate signal enhancement is mediated via the site-
specific strength of the electric field (      )

● Thin, sharp nanoparticles deliver can deliver large 
electric fields with low background signal, leading to large 
signal and SNR enhancement for adsorbates

● Surface mode frequencies overlapping the adsorbate 
vibrational frequencies give signal enhancements of 102-103 
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