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Outline

* Reminder of typical entanglement presentations
- Entanglement and spins
- Entanglement — “not just for spins”
* Entanglement in a 1D model of inelastic scattering
— Classical oscillator, classical beam
- Quantum oscillator, classical beam

— Quantum oscillator, quantum beam

e Conclusion



2022 Nobel Prize

* Citation: “for experiments with entangled photons, establishing
the violation of Bell inequalities and pioneering quantum
n science.”
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* Most introductions to entanglement 1
involve the spins of spatially ) = Z0a@ls +1a®0)s)
separated quantum particles, initially
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lllustration from the research
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https://www.iqoqi-vienna.at/research/brukner-group

“Entanglement Isn’t Just for Spins”

Daniel V. Schroeder’s article (Am. J. Phys. 85 (11)) explicitly
llustrates entanglement for two 1D particles trapped in a box
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Entanglement and Inelastic Scattering

* Entanglement in scattering situations arises naturally from
the interaction between the “beam” and the “target”
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lllustration by Christian Dwyer, in a review article
“Atomic-Resolution Core-Level Spectroscopy
in the Scanning Transmission Electron Microscope”


https://www.sciencedirect.com/science/article/abs/pii/B9780124076709000032

Simple 1D model of Inelastic Scattering

e Let’s capture this with a 1D model: Vi = —ay f(z)
— 1D beam (variable: x, mass: m)
- 1D oscillator (variable: y, mass: U,

. ()
angular frequency: wo)
 The Hamiltonian is straightforward:
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Consequences of the Full Classical Model

* We can find classical equations of

motion for each variable
. df
mir = oy—
dr

wij = —pedy + af(x)
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Consequences of the Full Classical Model
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* We can find classical equations of =5t ﬂ + Qwouy —ay f(z)
motion for each variable T~ ~ “  interaction
HI}( caln oscillator
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pij = —pwpy + af(x)

* When the beam travels swiftly
(x = vot), a predictable amount of /()
energy is transferred from beam to
oscillator (assuming it starts at rest)
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Classical Oscillations

* Final amplitude depends directly on model and initial conditions
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Classical Oscillations

* Final amplitude depends directly on model and initial conditions

P2 P 1 2mar | -

, - 1 ,
H=2+Y 4 Wi —ayflz) —» flw)=— /Jr‘j’(;-f)f.“wf > Yy, = f(wo)
2?“ 2!1’ 2 \"'—"v'_" 1;"_),7;' J”{'J"!D
h v ”  interaction
beam oscillator

fa) = b2/

\ o
Vo e Vb /4

Ym

[ vb



Classical Oscillations

* Final amplitude depends directly on model and initial conditions
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Quantizing Just the Oscillator

* Problem: Classical approach doesn'’t reflect experiment —
experiment only has some beam particles losing energy

* Trial fix: Use a classical beam, and a quantum oscillator
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Quantizing Just the Oscillator

* Problem: Classical approach doesn'’t reflect experiment —
experiment only has some beam particles losing energy

* Trial fix: Use a classical beam, and a quantum oscillator
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Consequences of Quantizing Just the Oscillator
* Approach 1:
First-order
time-dependent
perturbation theory
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* To first order, only the

first energy eigenstate
may be excited
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Conseqguences of Quantizing Just the Oscillator

* Approach 1: « Approach 2: Direct integration of the
Elrst-order Schrodinger equation
tlme-depc_endent in 2. t) = B, 1)
perturbation theory o

. classical beam (vg = 7.0), quantum oscillator
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Classical vs. Partly Quantum Approaches

* The classical amplitude of the classical HO oscillator is
proportional to the transition amplitude of the quantum HO
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Partly QM vs. Fully QM Approaches
* When will the partly QM approach match the fully QM one?

Partly QM Approach
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Partly QM vs. Fully QM Approaches
* When will the partly QM approach match the fully QM one?

Partly QM Approach Fully QM Approach
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Partly QM vs. Fully QM Approaches
* When will the partly QM approach match the fully QM one?

Partly QM Approach Fully QM Approach
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* Depends on the relation between reduced and full wavefunction
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Picturing the Fully QM Wavefunction

* Following the partly QM approach, the exact transition
probabilities form a Poisson distribution
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* Following the fully QM approach, our wavefunction would
be easier to visualize with the beam in k-space
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Imagining Y*¥ in ks and y

Initial state

* The probabillity
density of the beam
IS entangled with
that of the oscillator
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Imagining Y*¥ in ks and y

final state

* The probability
density of the beam 30y
IS entangled with 0.01
that of the oscillator

* Thinking question: D
how does this static —0.01
density relate to the

time-dependence of -10 -5 0 5 10 34,
the reduced ¥(y)? t
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Entanglement between kx and y
Measuring kx changes our predictions for y measurements
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Entanglement between kx and y
 Measuring kx changes our predictions for y measurements
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Entanglement between y and kx
 Measuring y changes our predictions for kx measurements
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Entanglement between y and kx
 Measuring y changes our predictions for kx measurements
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Conclusion

* |In classical scattering, the
external beam and target
oscillator dynamics are correlated
— but no one is iImpressed
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Conclusion

* |In classical scattering, the
external beam and target e
oscillator dynamics are correlated
— but no one is iImpressed

* |In quantum textbook treatments,

entanglement If_] Scatterlng_ IS classical beam (vy = 7.0), quantum oscillator
obscured by using a classical
beam that is not a probe 0.01 1 T2 - ,
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Conclusion

* |In classical scattering, the
external beam and target
oscillator dynamics are correlated
— but no one is iImpressed

In quantum textbook treatments,
entanglement in scattering is
obscured by using a classical
beam that is not a probe

Picturing the wavefunction
density #*¥ in kx and y can help
us to picture scattering
entanglement simply

initial state final state
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“Classical entanglement”

* Even in classical mechanics, there are plenty of cases where
measuring a subsystem yields information about parts of the
global system that are spatially separated from that subsystem

SYSTEM 1

1 2 1 2
“Entanglement Made Simple,”
by Frank Wilczek (Quanta, 2016; s S0% O%
illustration by Olena Shmahalo) 5
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https://www.quantamagazine.org/entanglement-made-simple-20160428/

Classical Examples

* |tis straightforward to calculate the
work done on a dipole oscillator
constrained to oscillate along y
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‘/int = —ayf(x)

Classical Examples

* |tis straightforward to calculate the
work done on a dipole oscillator AR
constrained to oscillate along y b
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- - 20 : spatial dependence of f(x)
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* Approximating this potential with a
Gaussian makes the problem
more tractable as homework 5
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When Partly and Fully QM Approaches Align

* |f we integrate the full Schrodinger equation over x, we can

see how the interaction term complicates our picture
h? 02 1
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When Partly and Fully QM Approaches Align

* |f we integrate the full Schrodinger equation over x, we can
see how the interaction term complicates our picture

0 W2 92 1.,
’Eﬁa'lp(y) - = ﬂﬁ—ygw(y) + 5#0‘)09 w(y)

— / dray f(z)Y(x,y)

* |f we compare this with the proposed dynamics of the
reduced Schrodinger equation, we find that this works if

/d.rf(:z:)w(:my) ~ f(vt)/d:w(rﬂay)
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