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Outline

● Reminder of typical entanglement presentations
– Entanglement and spins

– Entanglement – “not just for spins”

● Entanglement in a 1D model of inelastic scattering
– Classical oscillator, classical beam

– Quantum oscillator, classical beam

– Quantum oscillator, quantum beam

● Conclusion



  

2022 Nobel Prize
● Citation: “for experiments with entangled photons, establishing 

the violation of Bell inequalities and pioneering quantum 
information science.”

John S. Bell 
(1928-1990) Alain Aspect John F. Clauser Anton Zeilinger



  

Bell States

● Most introductions to entanglement 
involve the spins of spatially 
separated quantum particles, initially 
prepared in one of the “Bell States”

Illustration from the research
webpage of Caslav Brukner

https://www.iqoqi-vienna.at/research/brukner-group


  

“Entanglement Isn’t Just for Spins”

Daniel V. Schroeder’s article (Am. J. Phys. 85 (11)) explicitly 
illustrates entanglement for two 1D particles trapped in a box



  

Entanglement and Inelastic Scattering

● Entanglement in scattering situations arises naturally from 
the interaction between the “beam” and the “target”

Illustration by Christian Dwyer, in a review article
“Atomic-Resolution Core-Level Spectroscopy 

in the Scanning Transmission Electron Microscope”

https://www.sciencedirect.com/science/article/abs/pii/B9780124076709000032


  

Simple 1D model of Inelastic Scattering

● Let’s capture this with a 1D model:
– 1D beam (variable: x, mass: m)

– 1D oscillator (variable: y, mass: µ,
angular frequency: ω0)

● The Hamiltonian is straightforward:



  

Consequences of the Full Classical Model
● We can find classical equations of 

motion for each variable



  

Consequences of the Full Classical Model
● We can find classical equations of 

motion for each variable

● When the beam travels swiftly 
(x ≈ v0t), a predictable amount of 
energy is transferred from beam to 
oscillator (assuming it starts at rest)



  

Classical Oscillations
● Final amplitude depends directly on model and initial conditions
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Quantizing Just the Oscillator

● Problem: Classical approach doesn’t reflect experiment – 
experiment only has some beam particles losing energy

● Trial fix: Use a classical beam, and a quantum oscillator
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Consequences of Quantizing Just the Oscillator
● Approach 1: 

First-order 
time-dependent 
perturbation theory

● To first order, only the 
first energy eigenstate 
may be excited



  

Consequences of Quantizing Just the Oscillator
● Approach 2: Direct integration of the 

Schrodinger equation 

● Approach 1: 
First-order 
time-dependent 
perturbation theory

● To first order, only the 
first energy eigenstate 
may be excited



  

Classical vs. Partly Quantum Approaches

● The classical amplitude of the classical HO oscillator is 
proportional to the transition amplitude of the quantum HO



  

Partly QM vs. Fully QM Approaches

Partly QM Approach

● When will the partly QM approach match the fully QM one?
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Partly QM vs. Fully QM Approaches
● When will the partly QM approach match the fully QM one?

● Depends on the relation between reduced and full wavefunction

Partly QM Approach Fully QM Approach



  

Picturing the Fully QM Wavefunction

● Following the partly QM approach, the exact transition 
probabilities form a Poisson distribution 

● Following the fully QM approach, our wavefunction would 
be easier to visualize with the beam in k-space



  

Imagining Ψ*Ψ in kx and y 

● The probability 
density of the beam 
is entangled with 
that of the oscillator



  

Imagining Ψ*Ψ in kx and y 

● The probability 
density of the beam 
is entangled with 
that of the oscillator

● Thinking question: 
how does this static 
density relate to the 
time-dependence of 
the reduced Ψ(y)?



  

Entanglement between kx and y
● Measuring kx changes our predictions for y measurements



  

Entanglement between kx and y
● Measuring kx changes our predictions for y measurements

Measure kx≈k0

Altered predictions for
measurements of y

Measure kx≈k1

Measure kx≈k2



  

Entanglement between y and kx

● Measuring y changes our predictions for kx measurements



  

Entanglement between y and kx

● Measuring y changes our predictions for kx measurements

Altered predictions for
measurements of kx

Measure
y first

k0 probs

k1 probs

k2 probs



  

Conclusion
● In classical scattering, the 

external beam and target 
oscillator dynamics are correlated 
– but no one is impressed
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Conclusion
● In classical scattering, the 

external beam and target 
oscillator dynamics are correlated 
– but no one is impressed

● In quantum textbook treatments, 
entanglement in scattering is 
obscured by using a classical 
beam that is not a probe

● Picturing the wavefunction 
density Ψ*Ψ in kx and y can help 
us to picture scattering 
entanglement simply



  

“Classical entanglement”
● Even in classical mechanics, there are plenty of cases where 

measuring a subsystem yields information about parts of the 
global system that are spatially separated from that subsystem

“Entanglement Made Simple,” 
by Frank Wilczek (Quanta, 2016; 
illustration by Olena Shmahalo)

https://www.quantamagazine.org/entanglement-made-simple-20160428/


  

Classical Examples

● It is straightforward to calculate the 
work done on a dipole oscillator 
constrained to oscillate along y



  

Classical Examples

● It is straightforward to calculate the 
work done on a dipole oscillator 
constrained to oscillate along y

● Approximating this potential with a 
Gaussian makes the problem 
more tractable as homework



  

When Partly and Fully QM Approaches Align 

● If we integrate the full Schrodinger equation over x, we can 
see how the interaction term complicates our picture



  

When Partly and Fully QM Approaches Align 

● If we integrate the full Schrodinger equation over x, we can 
see how the interaction term complicates our picture

● If we compare this with the proposed dynamics of the 
reduced Schrodinger equation, we find that this works if
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