

Entanglement in a model of inelastic scattering

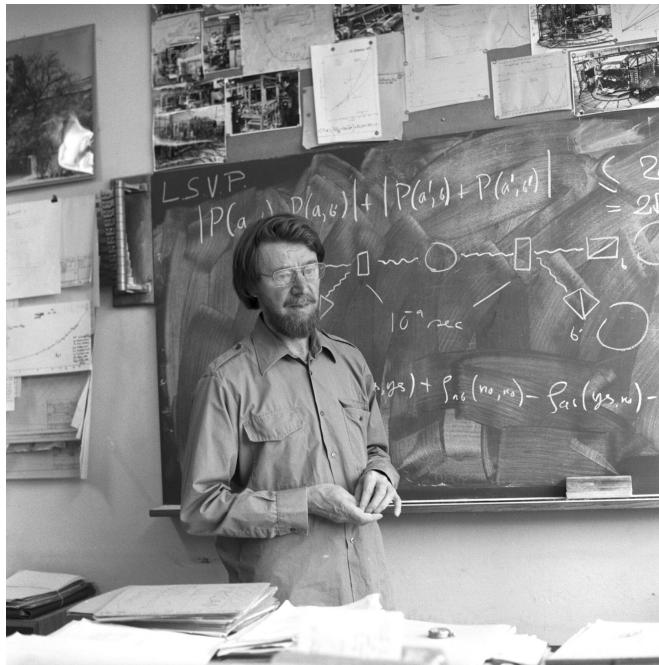
Dr. David Kordahl
November 4, 2022

Outline

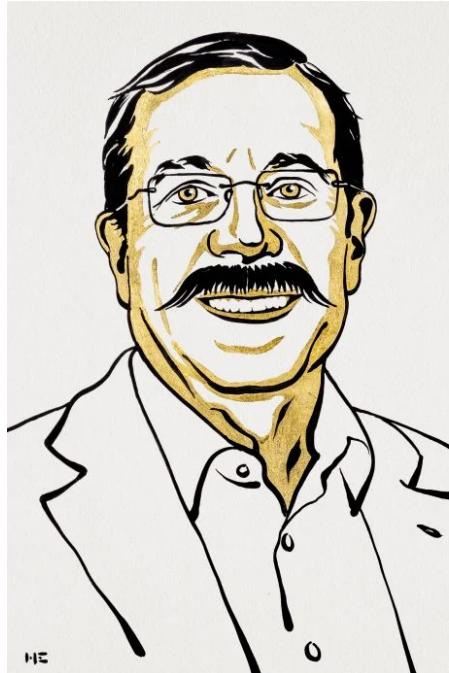
- Reminder of typical entanglement presentations
 - Entanglement and spins
 - Entanglement – “not just for spins”
- Entanglement in a 1D model of inelastic scattering
 - Classical oscillator, classical beam
 - Quantum oscillator, classical beam
 - Quantum oscillator, quantum beam
- Conclusion

2022 Nobel Prize

- Citation: “for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science.”

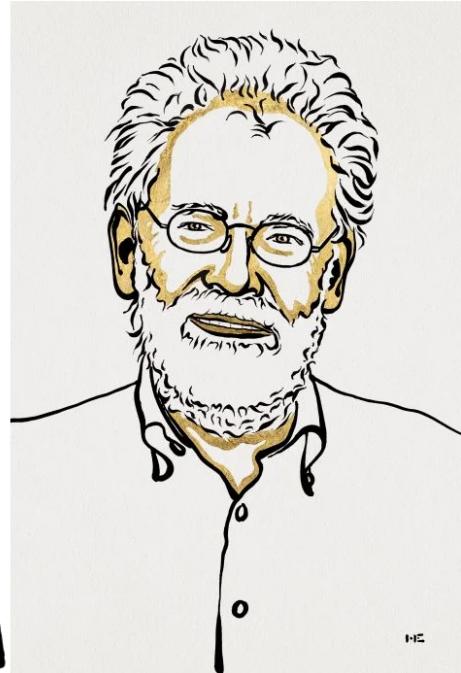


John S. Bell
(1928-1990)



Alain Aspect

John F. Clauser



Anton Zeilinger

Bell States

- Most introductions to entanglement involve the spins of spatially separated quantum particles, initially prepared in one of the “Bell States”

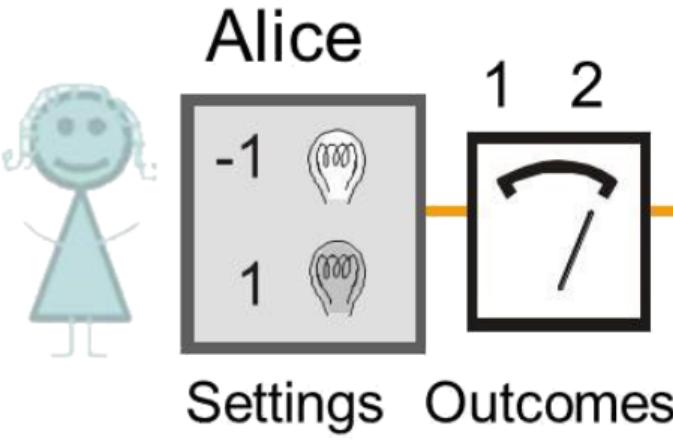
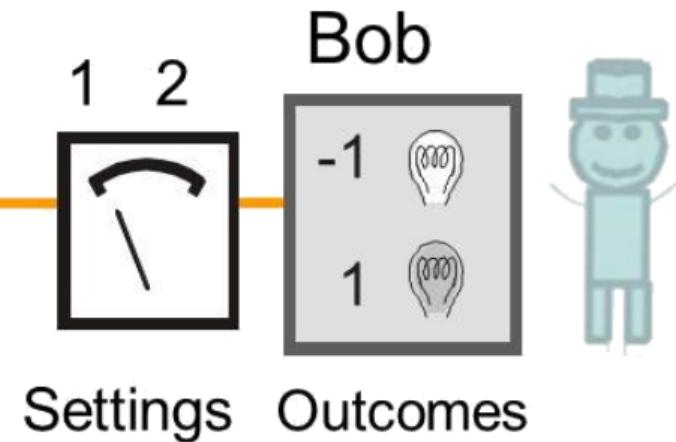
$$|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B)$$

$$|\Phi^-\rangle = \frac{1}{\sqrt{2}}(|0\rangle_A \otimes |0\rangle_B - |1\rangle_A \otimes |1\rangle_B)$$

$$|\Psi^+\rangle = \frac{1}{\sqrt{2}}(|0\rangle_A \otimes |1\rangle_B + |1\rangle_A \otimes |0\rangle_B)$$

$$|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|0\rangle_A \otimes |1\rangle_B - |1\rangle_A \otimes |0\rangle_B)$$

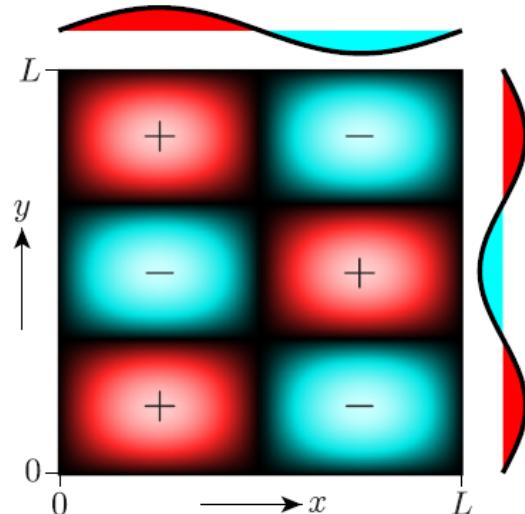
Illustration from the research [webpage](#) of Caslav Brukner



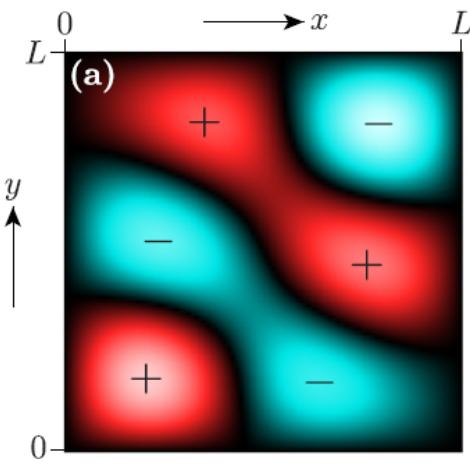
“Entanglement Isn’t Just for Spins”

Daniel V. Schroeder’s article (Am. J. Phys. 85 (11)) explicitly illustrates entanglement for two 1D particles trapped in a box

$$\psi(x, y) \propto \sin\left(\frac{n_x \pi x}{L}\right) \sin\left(\frac{n_y \pi y}{L}\right)$$



$$\psi \propto \sin\left(\frac{2\pi x}{L}\right) \sin\left(\frac{3\pi y}{L}\right) + \frac{1}{2} \sin\left(\frac{3\pi x}{L}\right) \sin\left(\frac{2\pi y}{L}\right)$$



Entanglement and Inelastic Scattering

- Entanglement in scattering situations arises naturally from the interaction between the “beam” and the “target”

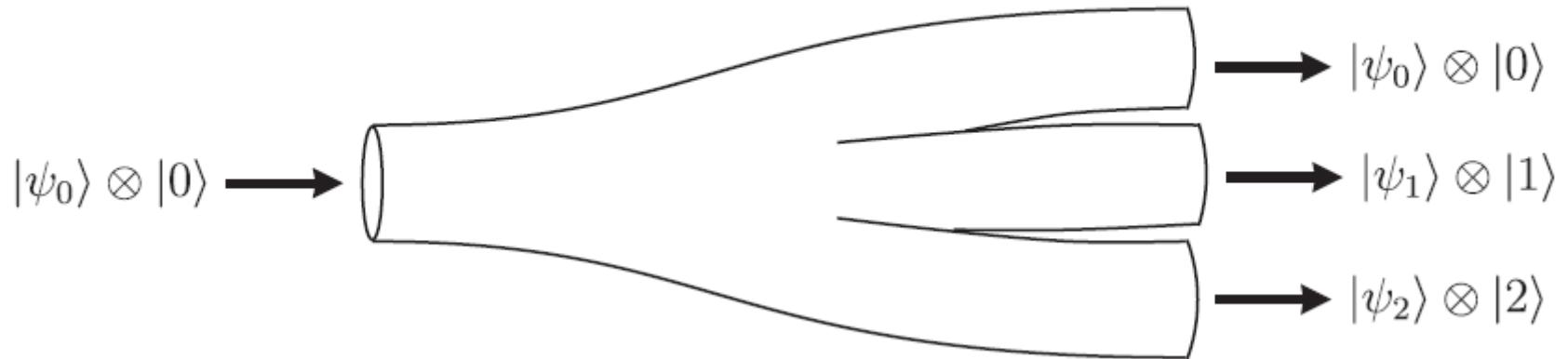
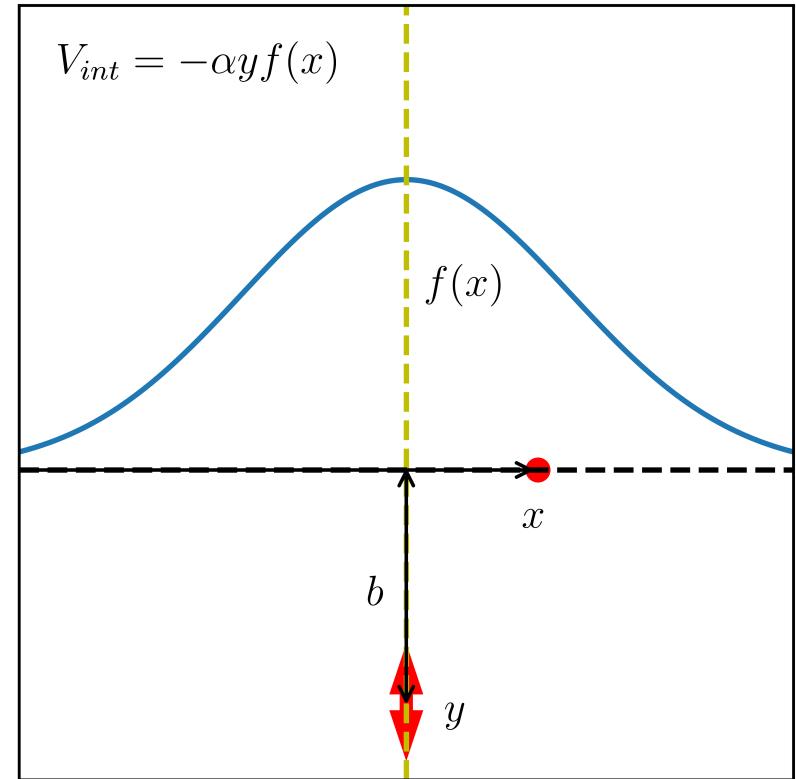


Illustration by Christian Dwyer, in a [review article](#)
“Atomic-Resolution Core-Level Spectroscopy
in the Scanning Transmission Electron Microscope”

Simple 1D model of Inelastic Scattering

- Let's capture this with a 1D model:
 - 1D beam (variable: x , mass: m)
 - 1D oscillator (variable: y , mass: μ , angular frequency: ω_0)
- The Hamiltonian is straightforward:

$$H = \underbrace{\frac{p_x^2}{2m}}_{\text{beam}} + \underbrace{\frac{p_y^2}{2\mu}}_{\text{oscillator}} + \underbrace{\frac{1}{2}\omega_0^2\mu y^2}_{\text{interaction}} - \alpha y f(x)$$



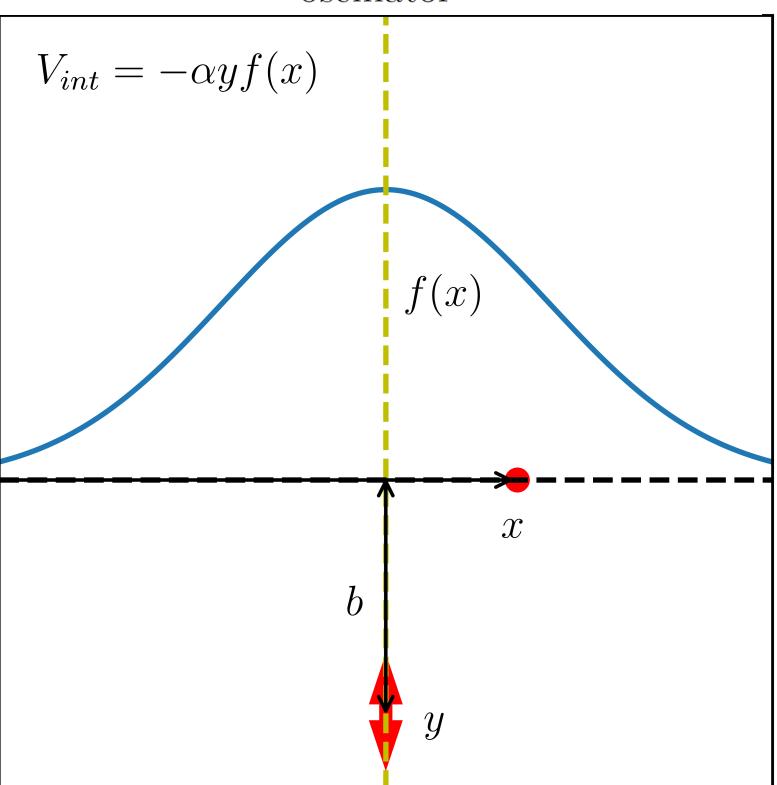
Consequences of the Full Classical Model

- We can find classical equations of motion for each variable

$$m\ddot{x} = \alpha y \frac{df}{dx}$$

$$\mu\ddot{y} = -\mu\omega_0^2 y + \alpha f(x)$$

$$H = \underbrace{\frac{p_x^2}{2m}}_{\text{beam}} + \underbrace{\frac{p_y^2}{2\mu}}_{\text{oscillator}} + \underbrace{\frac{1}{2}\omega_0^2\mu y^2 - \alpha y f(x)}_{\text{interaction}}$$



Consequences of the Full Classical Model

- We can find classical equations of motion for each variable

$$m\ddot{x} = \alpha y \frac{df}{dx}$$

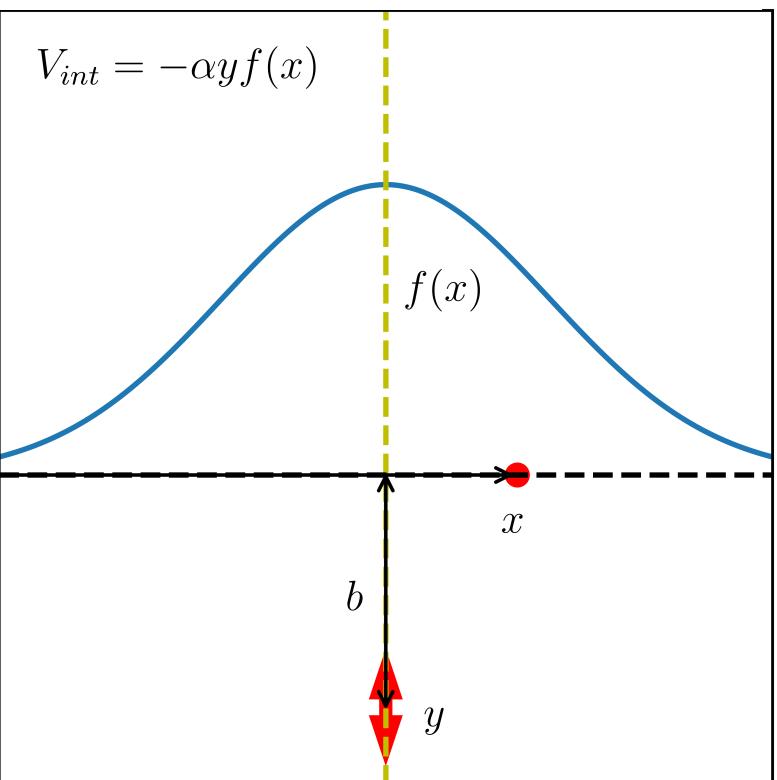
$$\mu\ddot{y} = -\mu\omega_0^2 y + \alpha f(x)$$

- When the beam travels swiftly ($x \approx v_0 t$), a predictable amount of energy is transferred from beam to oscillator (assuming it starts at rest)

$$W = \frac{\pi\alpha^2}{\mu} \left| \tilde{f}(\omega_0) \right|^2$$

$$\tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int dt f(vt) e^{i\omega t} dt$$

$$H = \underbrace{\frac{p_x^2}{2m}}_{\text{beam}} + \underbrace{\frac{p_y^2}{2\mu} + \frac{1}{2}\omega_0^2\mu y^2}_{\text{oscillator}} - \underbrace{\alpha y f(x)}_{\text{interaction}}$$



Classical Oscillations

- Final amplitude depends directly on model and initial conditions

$$H = \underbrace{\frac{p_x^2}{2m}}_{\text{beam}} + \underbrace{\frac{p_y^2}{2\mu}}_{\text{oscillator}} + \frac{1}{2}\omega_0^2\mu y^2 - \underbrace{\alpha y f(x)}_{\text{interaction}} \longrightarrow \tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int dt f(vt) e^{i\omega t} dt \longrightarrow y_m = \frac{\sqrt{2\pi}\alpha}{\mu\omega_0} |\tilde{f}(\omega_0)|$$

Classical Oscillations

- Final amplitude depends directly on model and initial conditions

$$H = \underbrace{\frac{p_x^2}{2m}}_{\text{beam}} + \underbrace{\frac{p_y^2}{2\mu}}_{\text{oscillator}} + \frac{1}{2}\omega_0^2\mu y^2 - \underbrace{\alpha y f(x)}_{\text{interaction}} \longrightarrow \tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int dt f(vt) e^{i\omega t} dt \longrightarrow y_m = \frac{\sqrt{2\pi}\alpha}{\mu\omega_0} |\tilde{f}(\omega_0)|$$

$$f(x) = b^{-2} e^{-x^2/b^2}$$

$$y_m = \frac{\sqrt{\pi}\alpha}{\mu\omega_0} \frac{e^{-b^2\omega_0^2/4v^2}}{vb}$$

Classical Oscillations

- Final amplitude depends directly on model and initial conditions

$$H = \underbrace{\frac{p_x^2}{2m}}_{\text{beam}} + \underbrace{\frac{p_y^2}{2\mu}}_{\text{oscillator}} + \underbrace{\frac{1}{2}\omega_0^2\mu y^2 - \alpha y f(x)}_{\text{interaction}} \longrightarrow \tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int dt f(vt) e^{i\omega t} dt \longrightarrow y_m = \frac{\sqrt{2\pi}\alpha}{\mu\omega_0} |\tilde{f}(\omega_0)|$$

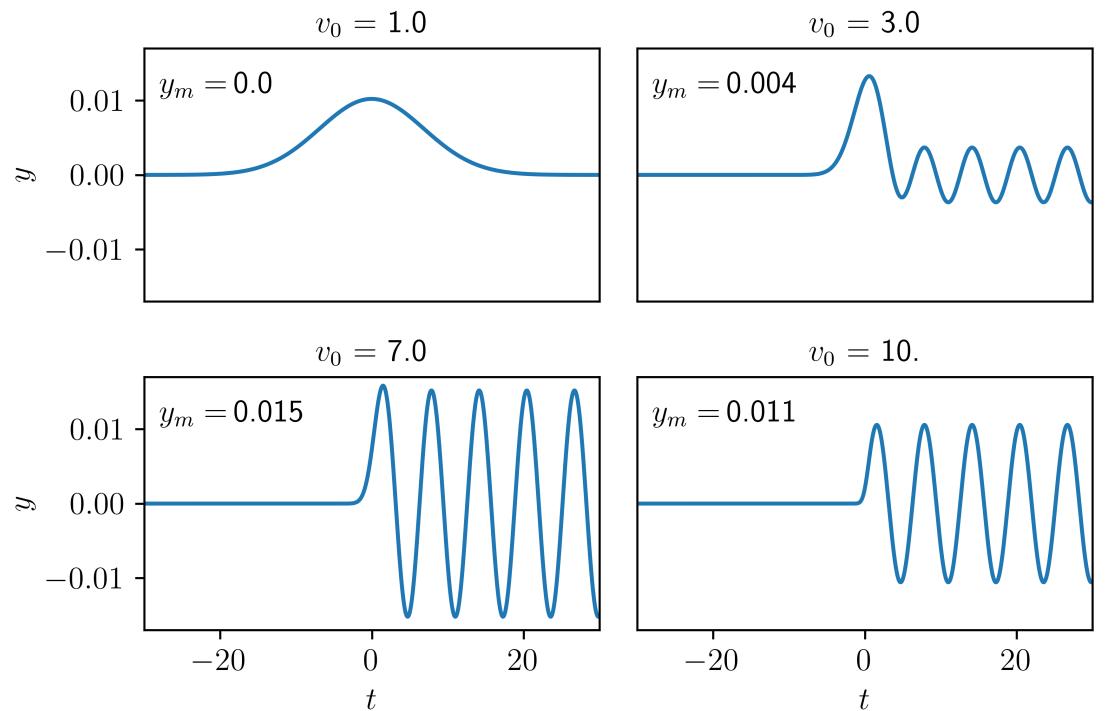
$$f(x) = b^{-2} e^{-x^2/b^2}$$

$$y_m = \frac{\sqrt{\pi}\alpha}{\mu\omega_0} \frac{e^{-b^2\omega_0^2/4v^2}}{vb}$$

$$\hbar = \omega_0 = m = 1$$

$$b = 10$$

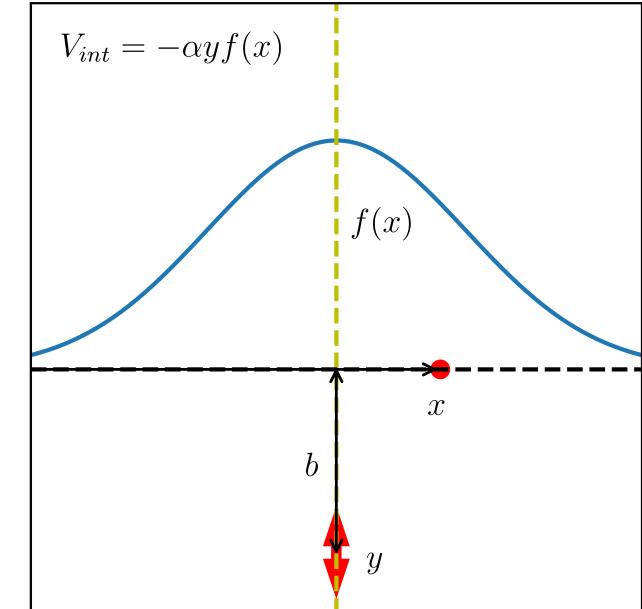
$$\alpha = \mu = 100$$



Quantizing Just the Oscillator

- Problem: Classical approach doesn't reflect experiment – experiment only has some beam particles losing energy
- Trial fix: Use a classical beam, and a quantum oscillator

$$H = \underbrace{\frac{p_y^2}{2\mu} + \frac{1}{2}\omega_0^2\mu y^2}_{\text{unperturbed oscillator}} - \underbrace{\alpha y f(vt)}_{\text{time-dependent perturbation}}$$



Quantizing Just the Oscillator

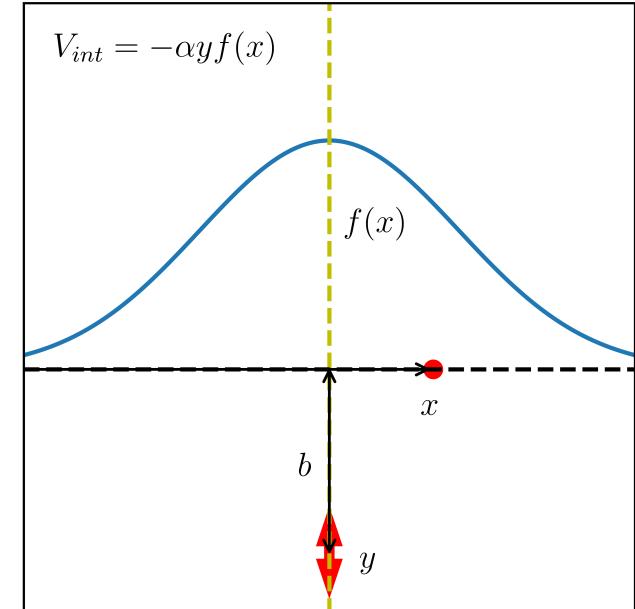
- Problem: Classical approach doesn't reflect experiment – experiment only has *some* beam particles losing energy
- Trial fix: Use a classical beam, and a quantum oscillator

$$[y, p_y] = i\hbar$$

$$a^\dagger = \frac{1}{\sqrt{2\hbar\omega_0\mu}} (\omega_0\mu y - ip_y)$$

$$a = \frac{1}{\sqrt{2\hbar\omega_0\mu}} (\omega_0\mu y + ip_y)$$

$$H = \underbrace{\hbar\omega_0 \left(a^\dagger a + \frac{1}{2} \right)}_{H_0} - \underbrace{\alpha f(vt) \sqrt{\frac{\hbar}{2\omega_0\mu}} (a + a^\dagger)}_{H_{int}(t)}$$



Consequences of Quantizing Just the Oscillator

- Approach 1:
First-order
time-dependent
perturbation theory

$$P_n^{(1)} = \frac{1}{\hbar^2} \left| \int_{-\infty}^{\infty} \langle n | H_{int}(t) e^{in\omega_0 t} | 0 \rangle dt \right|^2$$

- To first order, only the first energy eigenstate may be excited

$$P_1^{(1)} = \frac{\pi\alpha^2}{\hbar\mu\omega_0} |\tilde{f}(\omega_0)|^2$$

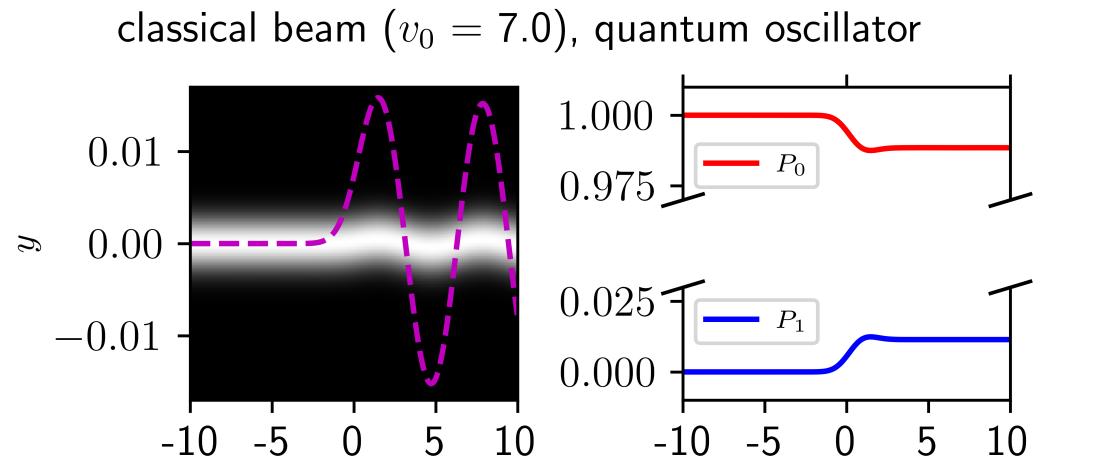
Consequences of Quantizing Just the Oscillator

- Approach 1: First-order time-dependent perturbation theory
- Approach 2: Direct integration of the Schrodinger equation

$$P_n^{(1)} = \frac{1}{\hbar^2} \left| \int_{-\infty}^{\infty} \langle n | H_{int}(t) e^{in\omega_0 t} | 0 \rangle dt \right|^2$$

- To first order, only the first energy eigenstate may be excited

$$P_1^{(1)} = \frac{\pi \alpha^2}{\hbar \mu \omega_0} |\tilde{f}(\omega_0)|^2$$



$$\langle y \rangle = \int dy \psi^*(y) y \psi(y) \quad \langle \psi_1 | \psi \rangle = \int dy \psi_1^*(y) \psi(y)$$

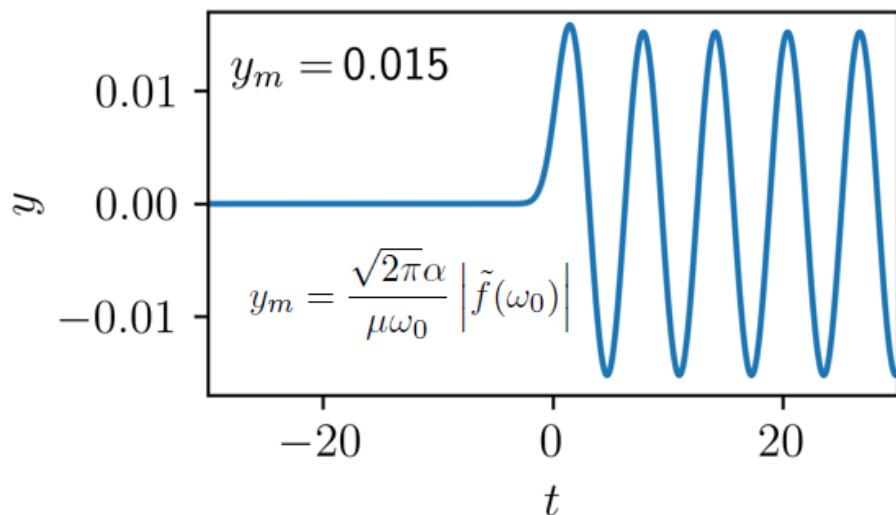
$$P_1 = |\langle \psi_1 | \psi \rangle|^2$$

Classical vs. Partly Quantum Approaches

- The classical amplitude of the classical HO oscillator is proportional to the transition amplitude of the quantum HO

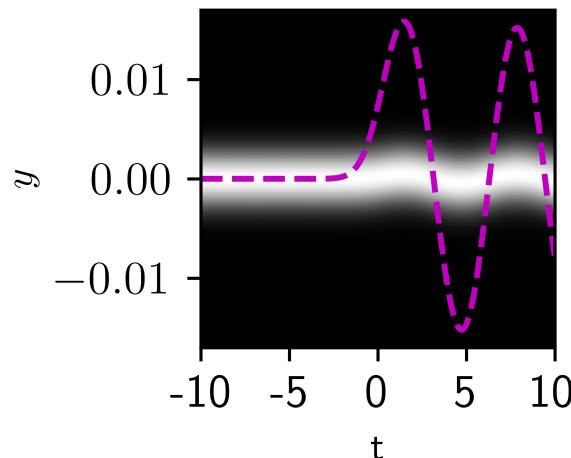
$$y_m = \sqrt{\frac{2\hbar}{\mu\omega}} P_1^{(1)}$$

$$v_0 = 7.0$$

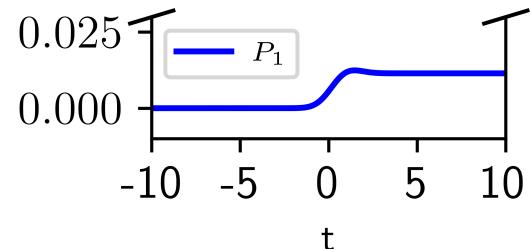


$$P_1^{(1)} = \frac{\mu\omega_0}{2\hbar} y_m^2$$

classical beam ($v_0 = 7.0$), quantum oscillator



$$P_1 = \frac{\pi\alpha^2}{\hbar\mu\omega_0} |\tilde{f}(\omega_0)|^2$$



Partly QM vs. Fully QM Approaches

- When will the partly QM approach match the fully QM one?

Partly QM Approach

$$i\hbar \frac{\partial}{\partial t} \psi(y) = \hat{H}(t) \psi(y)$$

$$\begin{aligned} \hat{H}(t) = & -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} \mu \omega_o^2 y^2 \\ & - \alpha y f(vt) \end{aligned}$$

Partly QM vs. Fully QM Approaches

- When will the partly QM approach match the fully QM one?

Partly QM Approach

$$i\hbar \frac{\partial}{\partial t} \psi(y) = \hat{H}(t) \psi(y)$$

$$\begin{aligned} \hat{H}(t) = & -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} \mu \omega_o^2 y^2 \\ & - \alpha y f(vt) \end{aligned}$$

Fully QM Approach

$$i\hbar \frac{\partial}{\partial t} \psi(x, y) = \hat{H} \psi(x, y)$$

$$\begin{aligned} \hat{H} = & -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - \frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} \mu \omega_o^2 y^2 \\ & - \alpha y f(x) \end{aligned}$$

Partly QM vs. Fully QM Approaches

- When will the partly QM approach match the fully QM one?

Partly QM Approach

$$i\hbar \frac{\partial}{\partial t} \psi(y) = \hat{H}(t) \psi(y)$$

$$\begin{aligned} \hat{H}(t) = & -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} \mu \omega_o^2 y^2 \\ & - \alpha y f(vt) \end{aligned}$$

Fully QM Approach

$$i\hbar \frac{\partial}{\partial t} \psi(x, y) = \hat{H} \psi(x, y)$$

$$\begin{aligned} \hat{H} = & -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - \frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} \mu \omega_o^2 y^2 \\ & - \alpha y f(x) \end{aligned}$$

- Depends on the relation between reduced and full wavefunction

$$\psi(y) = \int dx \psi(x, y)$$

Picturing the Fully QM Wavefunction

- Following the partly QM approach, the exact transition probabilities form a Poisson distribution

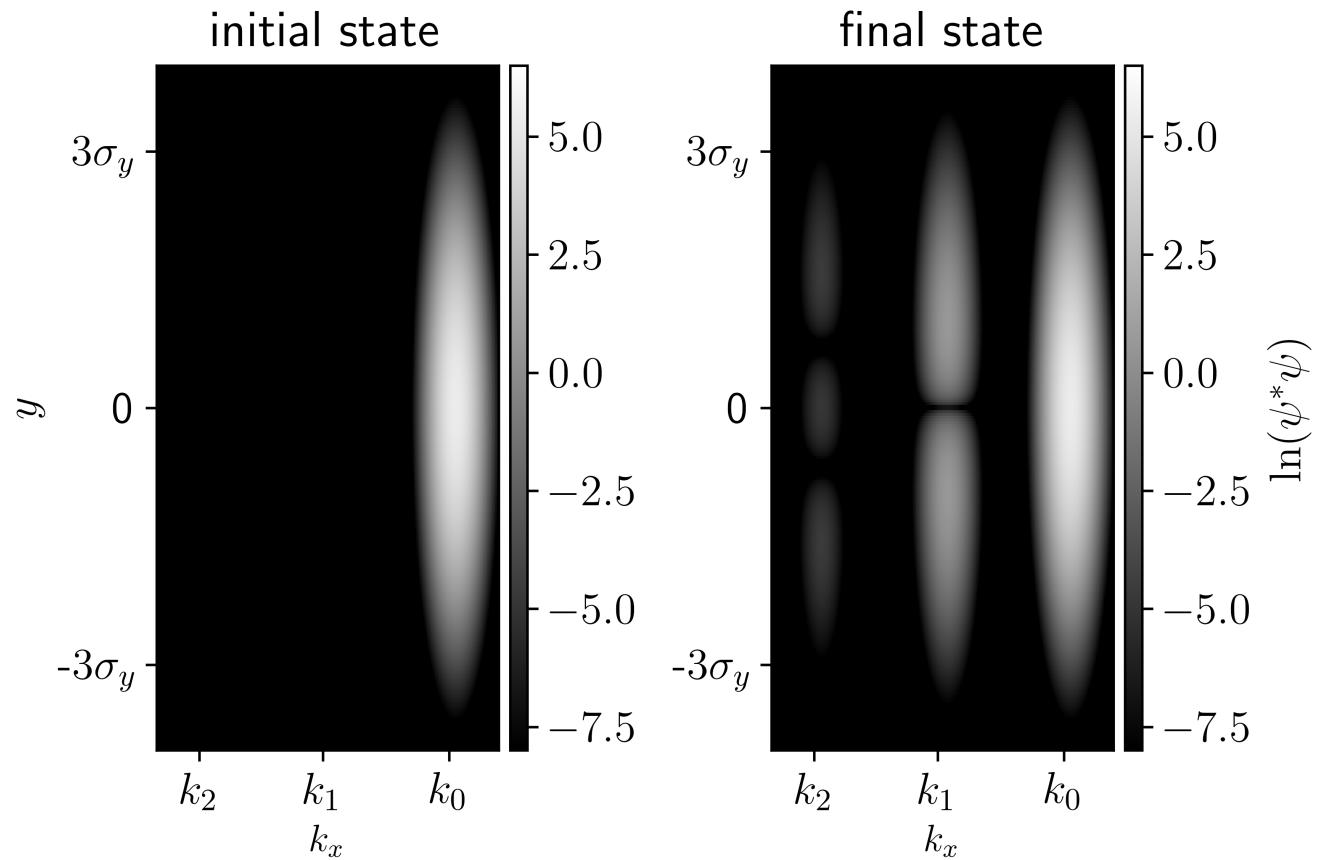
$$P_n = \exp\left(-P_1^{(1)}\right) \frac{\left(P_1^{(1)}\right)^n}{n!}$$

- Following the fully QM approach, our wavefunction would be easier to visualize with the beam in k-space

$$i\hbar \frac{\partial}{\partial t} \tilde{\psi}(k_x, y) = \left(\frac{\hbar^2 k_x^2}{2m} - \frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} + \frac{1}{2} \mu \omega_0^2 y^2 \right) \tilde{\psi}(k_x, y) - \frac{\alpha}{\sqrt{2\pi}} y \tilde{f}(k_x) * \tilde{\psi}(k_x, y)$$

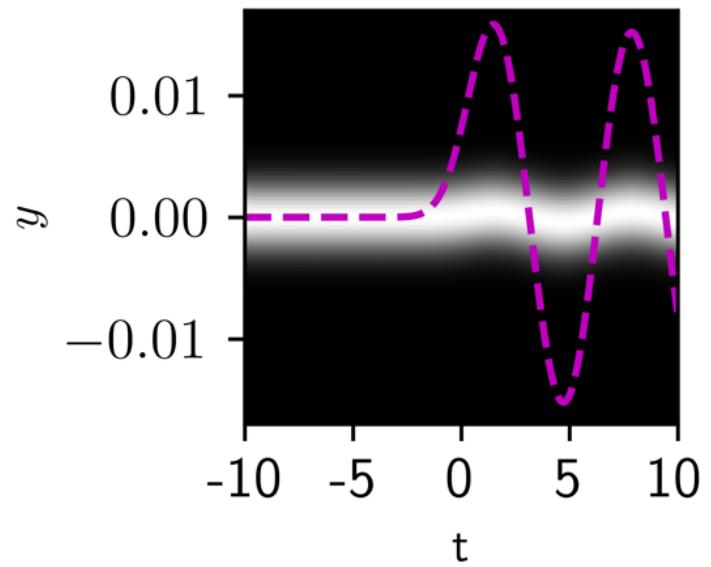
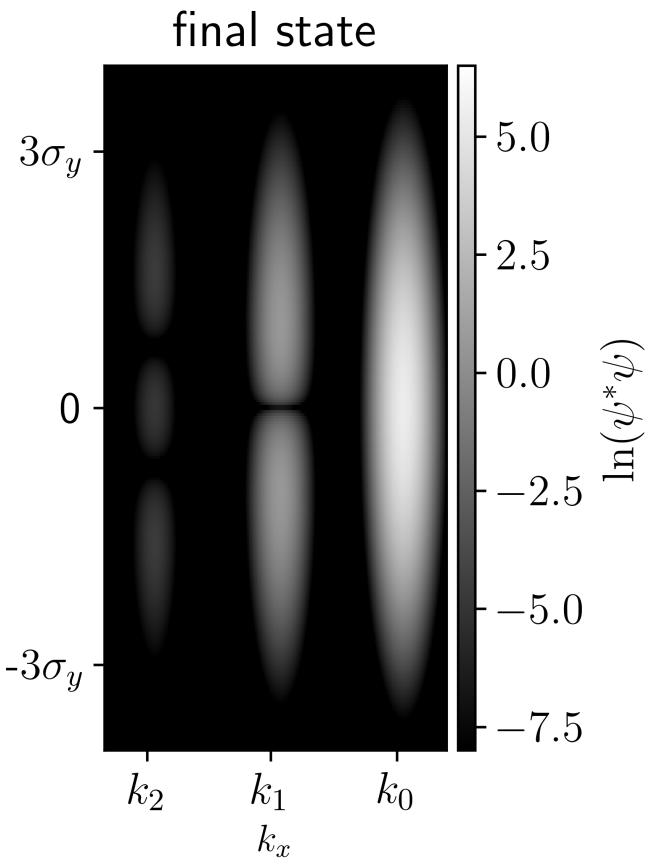
Imagining $\psi^*\psi$ in k_x and y

- The probability density of the beam is entangled with that of the oscillator



Imagining $\Psi^*\Psi$ in k_x and y

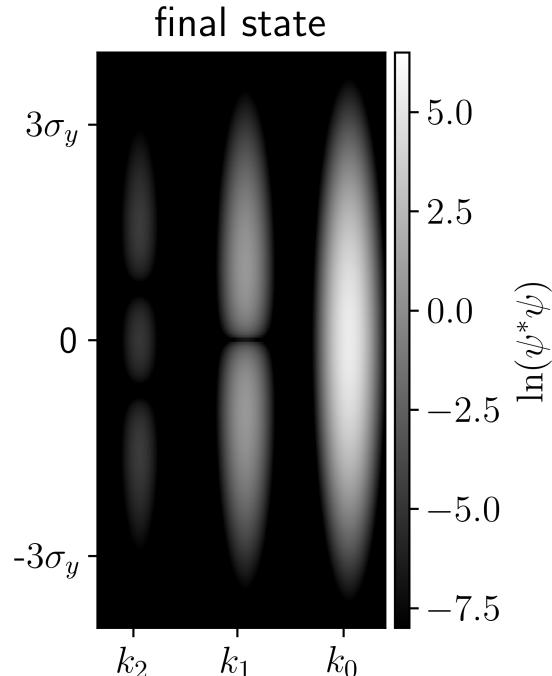
- The probability density of the beam is entangled with that of the oscillator
- Thinking question: how does this static density relate to the time-dependence of the reduced $\Psi(y)$?



Entanglement between k_x and y

- Measuring k_x changes our predictions for y measurements

$$\psi'(y) \propto \int_{k_n - \Delta_k/2}^{k_n + \Delta_k/2} dk_x \psi(k_x, y)$$

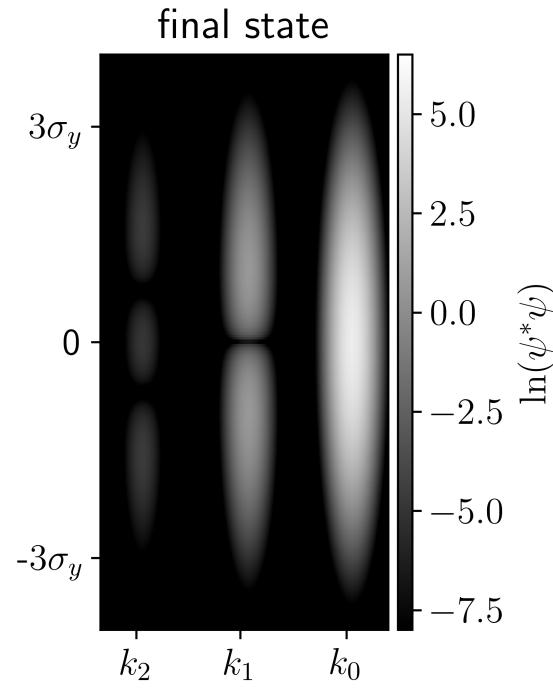


Entanglement between k_x and y

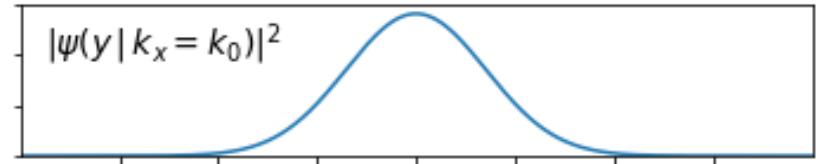
- Measuring k_x changes our predictions for y measurements

$$\psi'(y) \propto \int_{k_n - \Delta_k/2}^{k_n + \Delta_k/2} dk_x \psi(k_x, y)$$

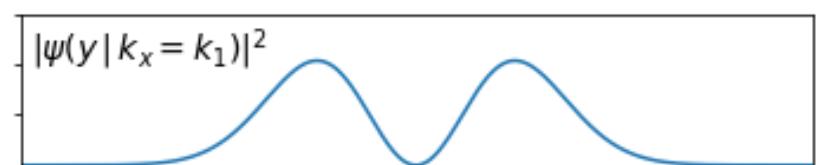
Altered predictions for measurements of y



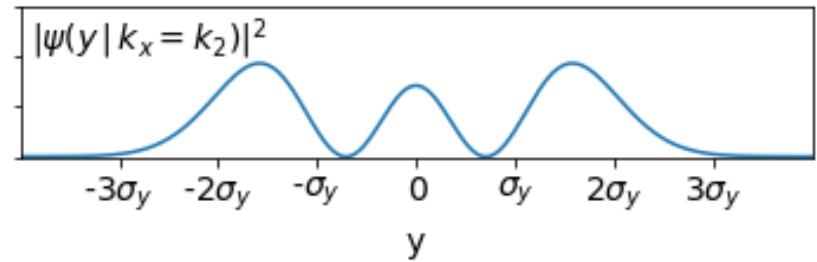
Measure $k_x \approx k_0$ →



Measure $k_x \approx k_1$ →



Measure $k_x \approx k_2$ →

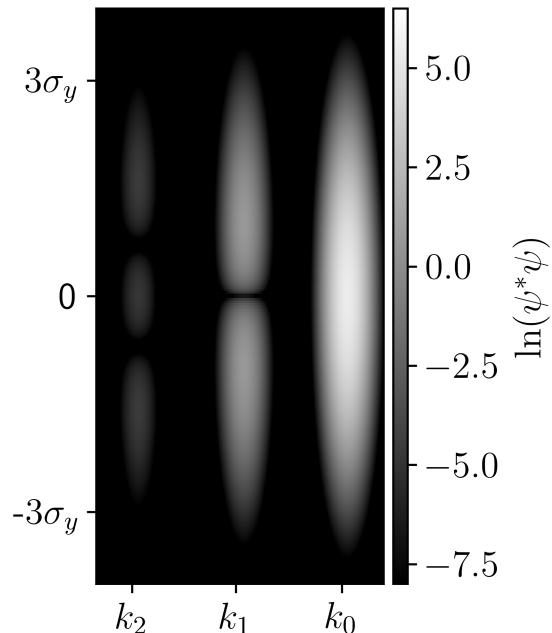


Entanglement between y and k_x

- Measuring y changes our predictions for k_x measurements

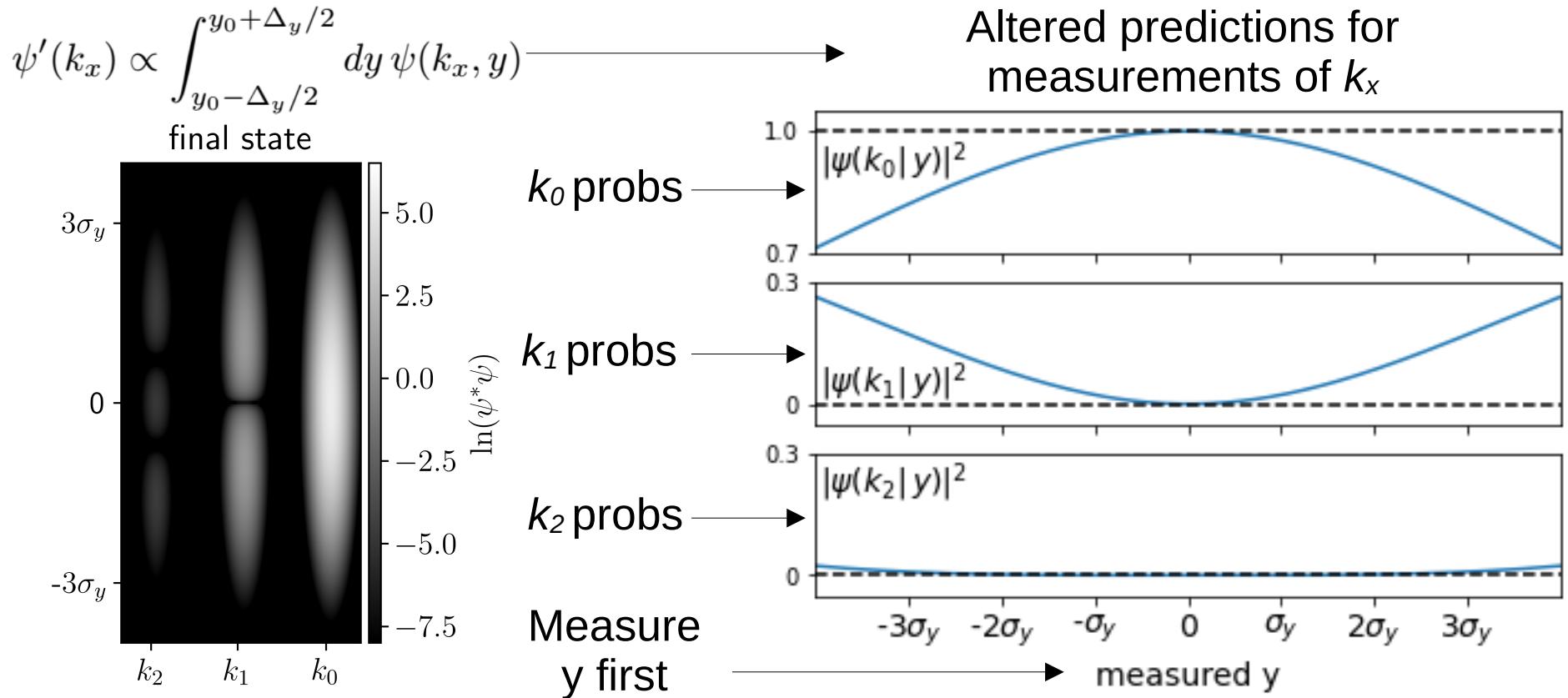
$$\psi'(k_x) \propto \int_{y_0 - \Delta_y/2}^{y_0 + \Delta_y/2} dy \psi(k_x, y)$$

final state



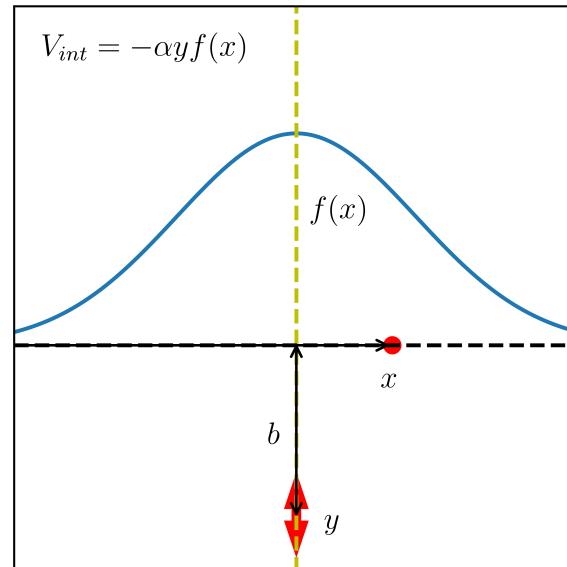
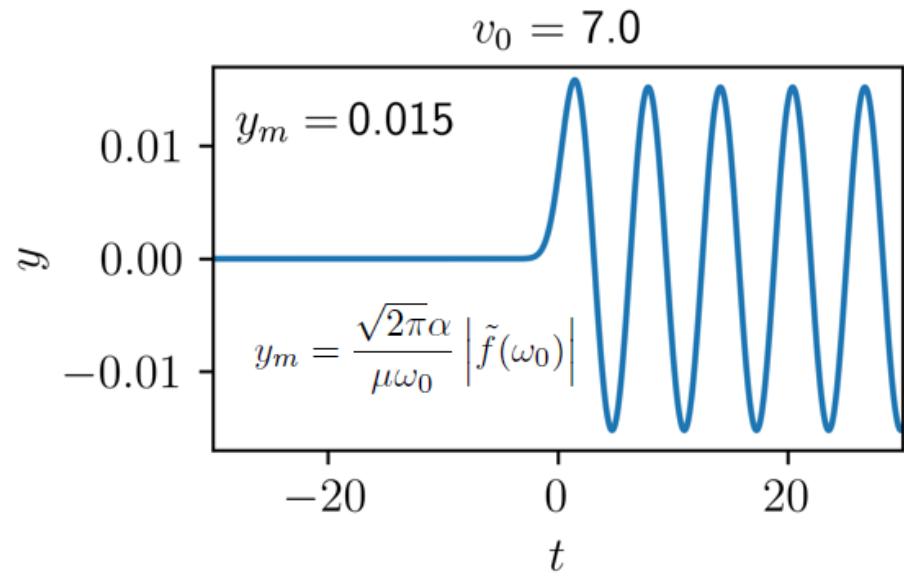
Entanglement between y and k_x

- Measuring y changes our predictions for k_x measurements



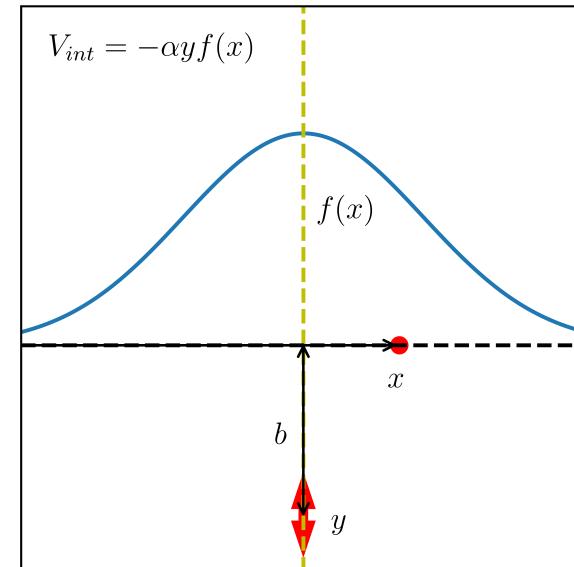
Conclusion

- In classical scattering, the external beam and target oscillator dynamics are correlated
 - but no one is impressed

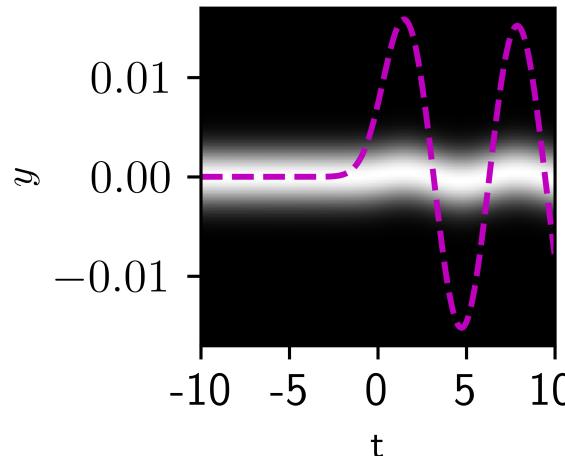


Conclusion

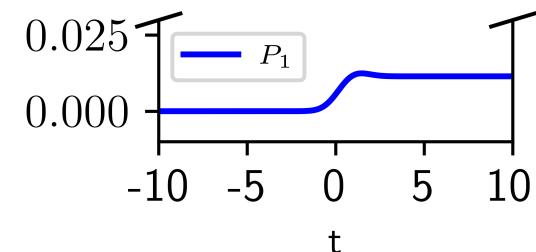
- In classical scattering, the external beam and target oscillator dynamics are correlated
 - but no one is impressed
- In quantum textbook treatments, entanglement in scattering is obscured by using a classical beam that is not a probe



classical beam ($v_0 = 7.0$), quantum oscillator

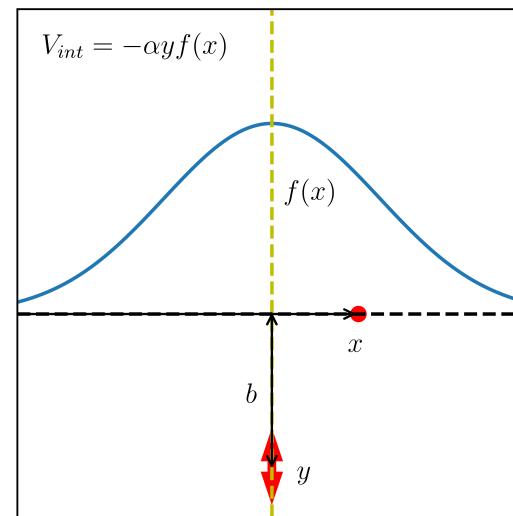
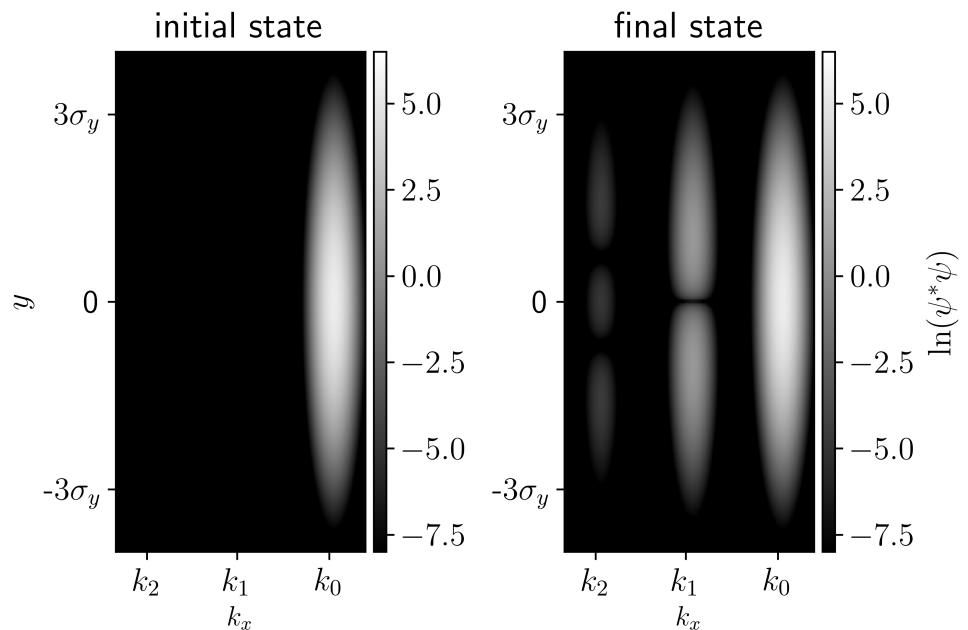


$$P_1^{(1)} = \frac{\pi\alpha^2}{\hbar\mu\omega_0} |\tilde{f}(\omega_0)|^2$$



Conclusion

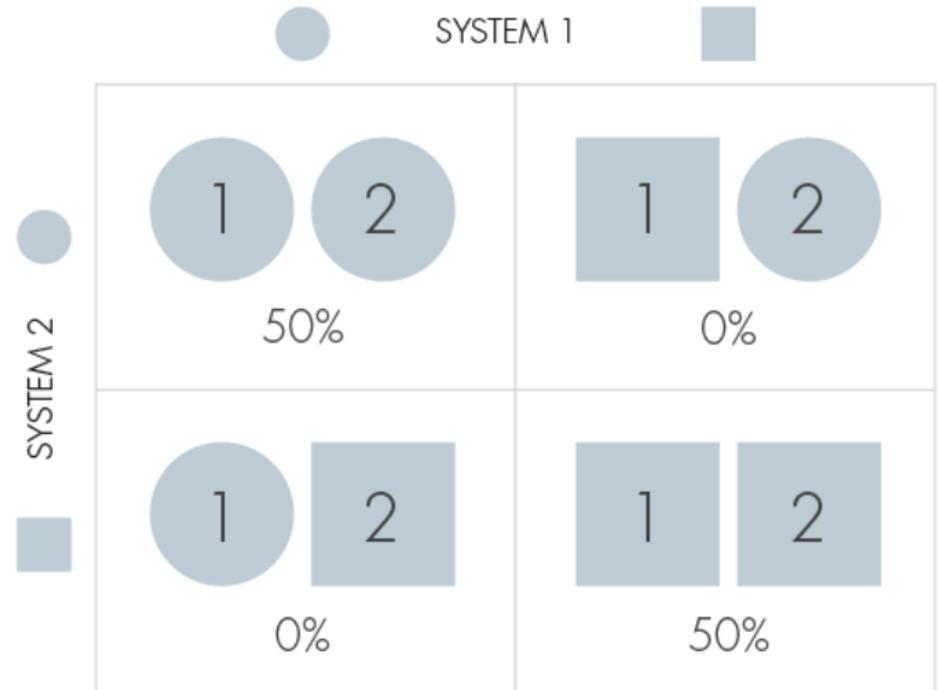
- In classical scattering, the external beam and target oscillator dynamics are correlated – but no one is impressed
- In quantum textbook treatments, entanglement in scattering is obscured by using a classical beam that is not a probe
- Picturing the wavefunction density $\psi^*\psi$ in k_x and y can help us to picture scattering entanglement simply



“Classical entanglement”

- Even in classical mechanics, there are plenty of cases where measuring a subsystem yields information about parts of the global system that are spatially separated from that subsystem

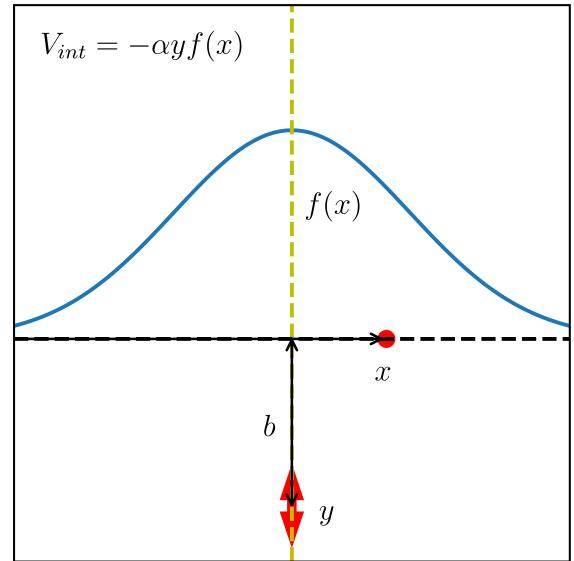
“Entanglement Made Simple,”
by Frank Wilczek (Quanta, 2016;
illustration by Olena Shmahalo)



Classical Examples

- It is straightforward to calculate the work done on a dipole oscillator constrained to oscillate along y

$$f(x) = \frac{b}{(x^2 + b^2)^{-3/2}} \longrightarrow W = \frac{2\alpha^2 \omega_0^2}{\mu v^4} K_1^2 \left(\frac{b \omega_0}{v} \right)$$



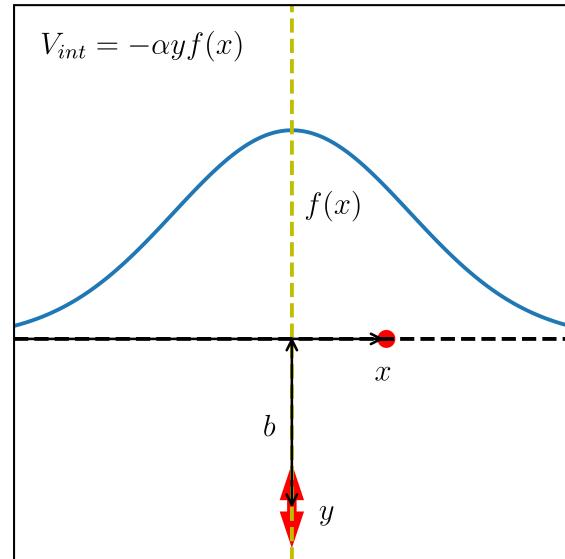
Classical Examples

- It is straightforward to calculate the work done on a dipole oscillator constrained to oscillate along y

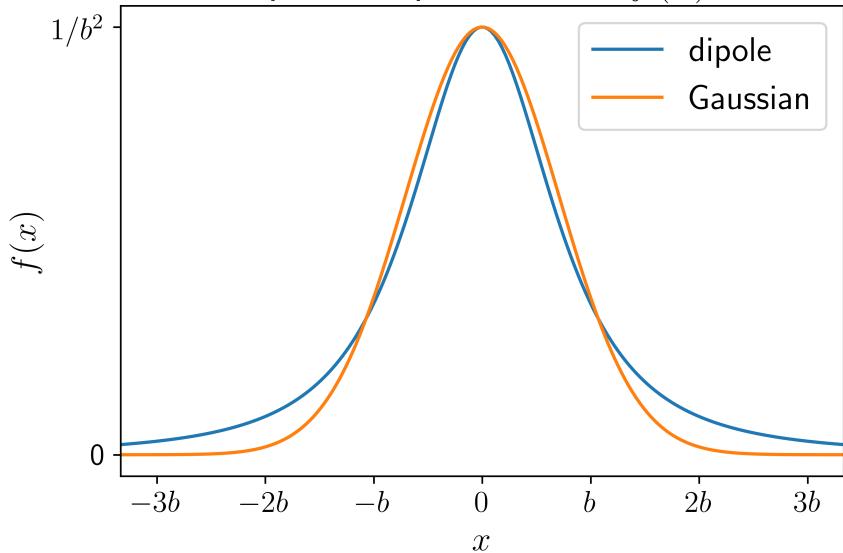
$$f(x) = \frac{b}{(x^2 + b^2)^{-3/2}} \longrightarrow W = \frac{2\alpha^2 \omega_0^2}{\mu v^4} K_1^2 \left(\frac{b \omega_0}{v} \right)$$

- Approximating this potential with a Gaussian makes the problem more tractable as homework

$$f(x) = b^{-2} e^{-x^2/b^2} \longrightarrow W = \frac{\pi \alpha^2}{2 \mu v^2 b^2} e^{-b^2 \omega_0^2/2v^2}$$



spatial dependence of $f(x)$



When Partly and Fully QM Approaches Align

- If we integrate the full Schrodinger equation over x, we can see how the interaction term complicates our picture

$$i\hbar \frac{\partial}{\partial t} \psi(y) = -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} \psi(y) + \frac{1}{2} \mu \omega_o^2 y^2 \psi(y) - \int dx \alpha y f(x) \psi(x, y)$$

When Partly and Fully QM Approaches Align

- If we integrate the full Schrodinger equation over x, we can see how the interaction term complicates our picture

$$i\hbar \frac{\partial}{\partial t} \psi(y) = -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial y^2} \psi(y) + \frac{1}{2} \mu \omega_o^2 y^2 \psi(y) - \int dx \alpha y f(x) \psi(x, y)$$

- If we compare this with the proposed dynamics of the reduced Schrodinger equation, we find that this works if

$$\int dx f(x) \psi(x, y) \approx f(vt) \int dx \psi(x, y)$$