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Complementarity and entanglement in a simple model of inelastic
scattering

David Kordahla)

Department of Physics and Engineering, Centenary College of Louisiana, Shreveport, Louisiana 71104

(Received 5 January 2023; accepted 12 June 2023)

A simple model coupling a one-dimensional beam particle to a one-dimensional harmonic oscillator is

used to explore complementarity and entanglement. This model, well-known in the inelastic scattering

literature, is presented under three different conceptual approaches, with both analytical and numerical

techniques discussed for each. In a purely classical approach, the final amplitude of the oscillator can

be found directly from the initial conditions. In a partially quantum approach, with a classical beam

and a quantum oscillator, the final magnitude of the quantum-mechanical amplitude for the oscillator’s

first excited state is directly proportional to the oscillator’s classical amplitude of vibration. Nearly the

same first-order transition probabilities emerge in the partially and fully quantum approaches, but

conceptual differences emerge. The two-particle scattering wavefunction clarifies these differences

and allows the consequences of quantum entanglement to be explored. # 2023 Published under an exclusive

license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0141389

I. INTRODUCTION

An understanding of quantum concepts is often built by
overlapping classical analogies, analytical models, and
numerical illustrations. After learning about a particle’s clas-
sical momentum, students are shown that a particle’s de
Broglie wavelength depends on the inverse of that momen-
tum. Students may then analytically model the one-
dimensional (1 D) reflection and transmission of de Broglie
waves from a potential barrier, whose analogous classical
counterparts would all have been stopped by the same bar-
rier. Further insight can be gained by numerically modeling
such reflection and transmission events using wave packets.
Each of these approaches teases out new qualitative and
quantitative connections.1

Recent years have seen an increasing consensus that the
concept of entanglement—the inability of some quantum
states to be written as the product of individual particle
states—should be a part of every student’s quantum toolkit.
As Schroeder pointed out in “Entanglement isn’t just for
spins,” entanglement generically arises when quantum par-
ticles interact with each other.2 In that paper, Schroeder pre-
sented two dynamical models showing how entanglement
emerges, but lamented that such examples are rarely
included in quantum mechanics textbooks. “The reason,” he
conceded, “is probably that despite their conceptual simplic-
ity, a quantitative treatment of either scenario requires
numerical methods.”

This paper presents a conceptually simple model that can
model entanglement without resorting to numerical methods.
The level of mathematical difficulty in this treatment is simi-
lar to that of the commonly taught models involving poten-
tial barriers. The model is a simplified 1D treatment of
inelastic scattering. It is well-known to the electron spectros-
copy community3 and is similar to the model of a 1D atom
scattering off a 1D harmonic oscillator presented in this jour-
nal several decades ago by Knudson,4 though this treatment
differs in its attention to the time-evolution of the scattering
process.

In the model under review, a beam particle is coupled to a
harmonic oscillator, as illustrated in Fig. 1. The model

Hamiltonian sums the contributions of a 1D free particle of
mass m (position variable x, conjugate momentum px), a 1D
harmonic oscillator of reduced mass l and resonance fre-
quency x0 (position variable y, conjugate momentum py),
and an interaction term H1 that couples the two systems

H ¼ H0
beam þ H0

HO þ H1

¼ p2
x

2m|{z}
beam

þ
p2

y

2l
þ 1

2
lx2

0y2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
harmonic oscillator

� a y f ðxÞ|fflfflffl{zfflfflffl}
interaction

: (1)

The coupling constant a rationalizes units and tunes the
strength of the interaction, and the spatially varying “window
function” f(x) is taken to have units of length–2 and to die off
as x approaches 61. The negative sign in H1 means that the
oscillator is attracted toward the beam when a and f(x) are
positive, but changing this sign would not significantly alter
any results.

Though its form is simple, this model can be used to cap-
ture real physics. For instance, in “Characterizing localized
surface plasmons using electron energy-loss spectroscopy,”
Cherqui et al.5 derived “classical” and “quantum”
Hamiltonians for the electron-plasmon interaction (their Eqs.
14 and 15) that map, respectively, onto our Eqs. (1) and (30),
but for the fact that an electron couples to infinitely many
plasmonic modes, while our beam couples to just one oscil-
lator. For the plasmonic case, as an electron nears a nanopar-
ticle, a surface charge is induced, which in turn interacts
with the electron via the Coulomb potential. The physics in
this model is analogous, with the passing beam tugging on
the oscillator, and the oscillator in turn tugging back on the
beam.

In addition to its discussion of entanglement, this presenta-
tion also highlights conceptual issues surrounding classical/
quantum complementarity.6 Complementarity is explored
implicitly as different approaches to the model are pre-
sented—a classical approach (Sec. II), and, after a review of
perturbation theory (Sec. III), partially and fully quantum
approaches (Secs. IV and V). Complementarity then is
addressed explicitly in Sec. VI, where the transition from
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one approach to the next is discussed, and Sec. VII explores
post-interaction entanglement, showing how predictions may
change in entangled systems following a measurement.
Section VIII is a short summary.

II. CLASSICAL APPROACH

Solving the model in the classical approach requires only
standard tools. Applying Hamilton’s equations

dx

dt
¼ @H

@px

dy

dt
¼ @H

@py
; (2)

dpx

dt
¼ � @H

@x

dpy

dt
¼ � @H

@y
; (3)

to Eq. (1) yields the classical equations of motion for the
beam position x and oscillator displacement y,

m
d2x

dt2
¼ ay

df

dx
;

l
d2y

dt2
¼ �lx2

0yþ af ðxÞ; (4)

which can be solved either by analytical or numerical
methods.

A. Analytical calculation

If we suppose that the kinetic energy of our beam far
exceeds the magnitude of the interaction energy between the
beam and the harmonic oscillator, we will be safe in approxi-
mating the motion of the beam particle as

x � vt: (5)

Under this approximation, the equation of motion for the
oscillator becomes that of a driven harmonic oscillator

l
d2y

dt2
¼ �lx2

0yþ af ðvtÞ: (6)

Using the Fourier transform convention

~f ðxÞ ¼ 1ffiffiffiffiffiffi
2p
p

ðþ1
�1

dteixtf ðvtÞ; (7)

we can transform both sides of Eq. (6) to obtain

�lx2~yðxÞ ¼ �lx2
0~yðxÞ þ a~f ðxÞ; (8)

which can easily be solved algebraically to give us

~yðxÞ ¼ �a~f ðxÞ
lðx2 � x2

0Þ
: (9)

In principle, the story that this tells is simple. As the beam
passes, it pulls on the oscillator a bit, and once the beam is
far enough away, the oscillator will be left vibrating with
whatever amplitude it had once the beam and oscillator were
sufficiently separated to effectively decouple. In principle,
we should be able to find the final amplitude of the oscilla-
tor’s vibration by performing the inverse Fourier transform
of Eq. (9) to find y(t).

In practice, however, we would like our calculation to
depend less sensitively on phases, so instead we can calcu-
late the work done on the beam. This work will be negative,
since the beam loses energy as it passes, but the magnitude
of this energy loss equals the magnitude of the energy gain
by the oscillator, since the combined system is energy-
conserving. This transfer can then be used to calculate the
oscillator amplitude.

To calculate the work done on the beam, one can (a)
rewrite the work integral as an integral over time; (b) insert
the expression for y(t) as an inverse Fourier transform; (c)
reverse the order of the time and frequency integrals; and (d)
perform the frequency integral by slightly displacing the
poles off the real axis by i� and using the residue theorem.
These steps are carried out in detail in the Appendix. This
gives us the result that

Wbeam ¼ �
pa2

l
j ~f ðx0Þj2: (10)

The work done on the oscillator by the beam will have the
same magnitude but with the opposite sign

WHO ¼
pa2

l
j ~f ðx0Þj2: (11)

We might notice that this work done on the oscillator is pro-
portional to the oscillator amplitude squared. If the oscilla-
tor’s classical amplitude is ym, we can write

WHO ¼
1

2
lx2

0y2
m; (12)

which, in turn, gives us that

ym ¼
ffiffiffiffiffiffi
2p
p

a
lx0

j ~f ðx0Þj: (13)

Fig. 1. In the model being studied, one variable (x) represents the position of

a beam particle, and the other (y) represents the vibrational displacement of

an oscillator. The beam and oscillator are coupled via H1, a potential that

depends on the product of a coupling constant a, the oscillator displacement

y, and some spatially dependent function f(x), which may depend implicitly

on an impact parameter b.
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For specificity, let’s consider an example. Suppose we
approximate a dipole potential with a thinner-tailed
Gaussian,7 such that our window function f(x) is

f ðxÞ ¼ b�2e�x2=b2

: (14)

If we insert our approximate solution x � vt into this

f ðvtÞ ¼ b�2e�v2t2=b2

; (15)

we can take the Fourier transform (Eq. (7)) to yield

~f ðxÞ ¼ e�b2x2=4v2ffiffiffi
2
p

bv
; (16)

so the work done on the oscillator (Eq. (11)) is

WHO ¼
pa2

2lv2b2
e�b2x2

0
=2v2

; (17)

and the oscillator’s vibrational amplitude (Eq. (13)) is

ym ¼
ffiffiffi
p
p

a
lx0

e�b2x2
0
=4v2

vb
: (18)

B. Numerical calculation

Of course, one may avoid Fourier transforms altogether
and simply evolve the equations of motion numerically,
using, for instance, the Euler–Richardson method.8 Using
units where �h ¼ x0 ¼ m ¼ 1, b¼ 10, and l¼ 100, and using
the window function specified in Eq. (14), the results of this
are shown in Fig. 2 for four different initial velocities of the
beam particle (i.e., of dx/dt at t� �b=v), of v equal to 1.0,
3.0, 7.0, and 15. In each of the subplots, the classical ampli-
tude ym has been numerically checked and matches the value
predicted analytically in Eq. (18).

III. PERTURBATION THEORY REVIEW

However, there is a problem. The classical approach is
empirically inadequate for micro- or mesoscopic systems,
since the beam particle, in fact, will not lose energy each

time it passes the (generalized) oscillator. Sometimes the
beam particle will be observed to lose energy, but most of
the time it will pass by without any energy loss at all.

As a result, we will want to develop a quantum version of
the model. We are interested in both analytical and numeri-
cal solutions, and when we want analytical solutions in quan-
tum mechanics, we often turn to the perturbation theory. So
let’s briefly remind ourselves, now, about time-dependent
perturbation theory.9

Suppose we have an unperturbed Hamiltonian operator Ĥ0

whose eigenvectors jn0i are known,

Ĥ0 jn0i ¼ E0
njn0i: (19)

Solutions of the Schrodinger equation,

i�h
@jwi
@t
¼ Ĥ jwi; (20)

can be written, without loss of generality, in terms of coeffi-
cients cnðtÞ,

jwðtÞi ¼
X

n

cnðtÞe�iE0
nt=�hjn0i: (21)

When the Hamiltonian in question is the unperturbed

Hamiltonian Ĥ ¼ Ĥ0 , one can substitute Eq. (21) into the
Schrodinger equation to confirm that the coefficients cn are
constant in time. When the Hamiltonian is perturbed by a

weak (and possibly time-dependent) term Ĥ1ðtÞ such that

Ĥ ¼ Ĥ0 þ Ĥ1ðtÞ, the cn coefficients will still be useful, since
they vary more slowly in time than state coefficients would

without factoring out exp ð�iE0
nt=�hÞ.

Applying the operator h f 0j exp ðþiE0
f t=�hÞ to both sides

of Eq. (20) and inserting the expansion of Eq. (21), we can
find the time-dependence of any state coefficient cf as

i�h
dcf

dt
¼
X

n

h f 0jH1ðtÞjn0ieixfnt; (22)

where

xfn ¼
E0

f � E0
n

�h
: (23)

For a system that begins in initial state ji0i with energy Ei

at time t¼ – 1, Eq. (22) leads to a first-order perturbation
coefficient cf for exciting the system to some final state j f 0i
with energy Ef as

cf ðtÞ ¼ dfi �
i

�h

ðt

�1
hf 0jH1ðt0Þji0ieixfit

0
dt0; (24)

which means the first-order probability of transition to state
jf 0i is found by allowing t!1 and calculating

Pf ¼ jcf ðt ¼ þ1Þj2 (25)

from the Born rule. When the initial and final states are dis-
tinct, inserting Eq. (24) into Eq. (25) yields

Pf ¼
1

�h2

����
ðþ1
�1
h f jĤ1ðt0Þeixfit

0 jiidt0
����2; (26)

Fig. 2. Time-evolution of a classical oscillator (y) for different initial speeds

of passing beam (x): v0 ¼ 1:0 (top left), v0 ¼ 3:0 (top right), v0 ¼ 7:0 (bot-

tom left), and v0 ¼ 15 (bottom right). The final amplitude ym is given for

each case.
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which will be sufficient to let us calculate excitation proba-
bilities analytically for both of the common quantum-
mechanical approaches to the model being reviewed.

IV. PARTIALLY QUANTUM APPROACH

The partially quantized approach has us treat the oscillator
as quantized while treating the beam only as the source of a
time-dependent perturbation. If the beam is still modeled as
a classical particle whose path follows x � vt, the
Hamiltonian that acts on the oscillator wavefunction is

Ĥ ¼
p2

y

2l
þ 1

2
x2

0ly2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Ĥ0

� ayf ðvtÞ|fflfflffl{zfflfflffl}
Ĥ1 ðtÞ

: (27)

This form will allow us to use the perturbation theory, since
the energy eigenstates of the quantum harmonic oscillator
jni, with En ¼ ðnþ 1=2Þ�hx0, are well-known.

A. Analytical calculation

Of course, for the quantum harmonic oscillator, y and py

do not commute but follow

y; py½ � ¼ ypy � pyy ¼ i�h: (28)

The typical move, now, is to rewrite the Hamiltonian in
terms of creation and annihilation operators

a† ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hx0l
p xoly� ipyð Þ;

a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hx0l
p xolyþ ipyð Þ; (29)

which recasts the reduced Hamiltonian (Eq. (27)) as

H ¼ �hx0 a†aþ 1

2

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Ĥ0

� af ðvtÞ
ffiffiffiffiffiffiffiffiffiffiffi

�h

2x0l

s
aþ a†ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ĥ1 ðtÞ

: (30)

If the quantized oscillator begins its ground state of j0i
with energy E0 ¼ �hx0=2, we can calculate its probability of
being kicked into its excited energy eigenstate jni at energy
En ¼ ðnþ 1=2Þ�hx0 using Eq. (26)

Pn ¼
1

�h2

����
ðþ1
�1
hnjĤ1ðtÞeinx0tj0idt

����2: (31)

This expression predicts that the only possible transition
(considering first-order perturbations) is from j0i ! j1i,
with the probability

P1 ¼
pa2

�hlx0

j ~f ðx0Þj2: (32)

We might pause, now, to reflect on how this compares to
the outcome of the purely classical system. In the purely
classical system, we found that the final amplitude of the
oscillator ym could be calculated deterministically as a func-
tion of the initial beam speed. For the partially quantum

system, the same can be said of the probability P1 of finding
the quantum harmonic oscillator in its first excited state.

In fact, if we compare ym and P1, we find that

P1 ¼
lx0

2�h
y2

m; (33)

or, equivalently, that

ym ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2�h

lx
P1

s
: (34)

To belabor this point, we notice that the probability P1 is
proportional to the square of the magnitude of the coefficient
to j1i, so, to first order, the classical oscillation amplitude is
directly proportional to the magnitude of the quantum ampli-
tude of the j0i ! j1i transition.

B. Numerical calculation

What about a straightforward numerical solution? Suppose
we begin with the oscillator in its ground state, represented as
the normalized position wavefunction

w0ðyÞ ¼ hyj0i ¼
1

pr2
y

 !1=4

e�y2=2r2
y ; (35)

and we want to know its probability of transitioning to its
first excited state

w1ðyÞ ¼ hyj1i ¼
ffiffiffi
2
p

ry

1

pr2
y

 !1=4

y e�y2=2r2
y ; (36)

where in both w0ðyÞ and w1ðyÞ,

ry ¼
ffiffiffiffiffiffiffiffiffi

�h

lx0

s
: (37)

The most direct way to proceed is simply to use the time-
dependent Schrodinger equation

i�h
@

@t
wðyÞ ¼ ĤðtÞwðyÞ; (38)

where in the position representation, the time-dependent
Hamiltonian operator looks like

ĤðtÞ ¼ � �h2

2l
@2

@y2
þ 1

2
lx2

oy2 � ayf ðvtÞ: (39)

If the system starts in its ground state at some time t��b=v,
then it can be evolved forward in time using finite-difference
time-domain (FDTD) methods.10

The numerical calculation for this is shown in Fig. 3, for
v¼ 7 and the other model parameters kept the same as for
the classical simulations, as quoted in Sec. IV B. The dashed
purple trace in the figure is the numerically calculated
expected value of the oscillator displacement

hyi ¼
ðþ1
�1

dy w�ðyÞ y wðyÞ; (40)
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which, as we might expect, follows the classical result y(t)
for v¼ 7 shown in Fig. 2, as will be further established in our
discussion of complementarity below (Sec. VI).

From there, one can also calculate the overlap between the
wavefunction and its various energy eigenstates to find prob-
abilities. One may numerically calculate

hw1jwi ¼
ðþ1
�1

dy w�1ðyÞwðyÞ (41)

to find the probability of transition from j0i ! j1i as

P1 ¼ jhw1jwij
2

(42)

and similarly to find the probability of remaining in state j0i
as P0. These probabilities are shown on the right in Fig. 3,
and they match the analytical prediction of Eq. (32).

V. FULLY QUANTUM APPROACH

If we want to treat our model in a fully quantum-
mechanical way, the simplest way is to include the beam and
the oscillator in a combined quantum state.

To make the problem analytically tractable, it will be use-
ful to introduce a box length L over which our wavefunction
runs in x, so as to make it normalizable. This will allow us to
smuggle in classical notions like the velocity of the particle,
since the time integral as the beam goes from �L=2 to þL=2
can be written, if we consider that the beam travels at a speed
of approximately v throughout, as going from t� ¼ �L=2v to
tþ ¼ þL=2v.

Plane waves constitute energy eigenfunctions of the free
particle, which we can write in terms of k-vectors with
k ¼ mv=�h. We can also reuse the energy eigenstates of the
harmonic oscillator, which we will now express as jniy. So
we can write a general quantum-mechanical state for the
beam-oscillator system as

jwðx; y; tÞi ¼
X
kx;n

ckx;nðtÞ
eikxxffiffiffi

L
p e�iEkt=�h

 !
jniye�iEnt=�h
� �

;

(43)

where the
ffiffiffi
L
p

in the denominator is for plane-wave normali-
zation, and the energies are just

Ek ¼
�h2k2

x

2m
;

En ¼ nþ 1=2ð Þ�hx0: (44)

A. Analytical calculation

The Hamiltonian operator in the position basis is

Ĥ ¼ � �h2

2m

@2

@x2
� �h2

2l
@2

@y2
þ 1

2
lx2

oy2�ayf ðxÞ: (45)

Products of the plane waves along x and harmonic oscillator
states along y are energy eigenstates of this combined
Hamiltonian, but for the coupling term linking the two,

H1 ¼ �ayf ðxÞ: (46)

Using this, we can proceed here just as above, calculating
the transition coefficient ckx;n as t!1 using Eq. (24).

The initial state ji0i, with energy Ei, can be written as

ji0i ¼ eik0xffiffiffi
L
p j0iy;

Ei ¼
�h2k2

0

2m
þ �hx0=2; (47)

and the final state j f 0i, with energy Ef, as

j f 0i ¼ eik1xffiffiffi
L
p jniy;

Ef ¼
�h2k2

1

2m
þ nþ 1=2ð Þ�hx0: (48)

It is worth noticing that while the energy eigenstates of the
oscillator are fairly well-localized in y, the plane-wave
energy eigenstates of the beam are spread out over the entire
space in x. Though these plane-wave beam states connect
only loosely to “particle” concepts, their status as energy
eigenstates of the uncoupled beam allows us to use a stan-
dard perturbation theory.

At this point, we can once again use Eq. (26) to calculate
our first-order transition probabilities. We first find

h f 0jH1ji0i ¼�ahnjyyj0iy
1

L

ðþL=2

�L=2

dxe�iðk1�k0Þxf ðxÞ:

(49)

The hnjyyj0iy term is zero unless n¼ 1, leading again to the
prediction that only j0iy ! j1iy transitions are allowed to
first order. Next, we notice that the integral here has the form
of a spatial Fourier transform

�f ðkxÞ ¼ lim
L!1

1ffiffiffiffiffiffi
2p
p

ðþL=2

�L=2

dxe�ikxxf ðxÞ

¼ 1ffiffiffiffiffiffi
2p
p

ðþ1
�1

dxe�ikxxf ðxÞ: (50)

Putting these together, when n¼ 1 in j f 0i, we find

h f 0jH1ji0i ¼ � a
L

ffiffiffiffiffiffiffiffiffi
�hp
lx0

s
�f ðk1 � k0Þ: (51)

Fig. 3. A classical beam (v0 ¼ 7:0) is coupled to a quantum oscillator. Left:
w�ðyÞwðyÞ for the quantum harmonic oscillator in the partially quantum

approach is shown as a function of t in black and white, and the expectation

value for the oscillator’s displacement, hyi, is overlaid as a dashed line.

Right: The probabilities of measuring the oscillator in state j0i (top) or j1i
(bottom) are shown as a function of t.
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This time-independent expression can be used to calculate
the first-order transition coefficient in Eq. (24),

ckx¼k1;n¼1 ¼
i

�h

a
L

ffiffiffiffiffiffiffiffiffi
�hp
lx0

s
�f ðk1 � k0Þ

ðþL=2v

�L=2v
dt eixfit:

Ultimately, this coefficient should not depend on the box
length L, since that length was chosen for convenience.
However, the only way for L dependence to vanish is if
xfi ¼ 0, a condition that forces energy to be conserved as it
is exchanged between the beam and the oscillator.

Presuming that n¼ 1 for the oscillator in its final state, set-
ting xfi ¼ 0 fixes the possible wavenumber k1 for the scat-
tered electron state

xfi ¼ ðEf �EiÞ=�h¼ 0! 0¼ �h

2m
k2

1 � k2
0

	 

þx0: (52)

Taking xfi ¼ 0 also leads to the first-order transition coeffi-
cient of

ckx¼k1;n¼1 ¼
i

�h

a
L

ffiffiffiffiffiffiffiffiffi
�hp
lx0

s
�f ðk1 � k0Þ

ðþL=2v

�L=2v
dt!e

ixfi t 1

¼ i

�h

a
v

ffiffiffiffiffiffiffiffiffi
�hp
lx0

s
�f ðk1 � k0Þ;

which, squaring, yields the transition probability

P1 ¼
pa2

�hlx0v2
j �f ðk1 � k0Þj2: (53)

This resembles Eq. (32), and we can show that the two
expressions match when k1 � k0 is small. For our allowed
first-order transition, we may write xfi ¼ 0 as

0 ¼ �h

2m
ðk2

1 � k2
0Þ þ x0

! 0 ¼ �h

2m!ðk1 � k0Þ2
0 þ 2k0ðk1 � k0Þ

h i
þ x0;

which, if we rearrange and use k0 ¼ mv=�h, yields

k1 � k0 � �x0=v; (54)

which, in turn, allows us to write

P1 �
pa2

�hlx0v2
j �f ðx0=vÞj2; (55)

which, comparing �f ðkxÞ in Eq. (50) and ~f ðxÞ in Eq. (7),
reveals that this P1 indeed matches that of Eq. (32).

B. Numerical calculation (setup only)

The numerical calculation for the purely quantum model
may at first seem like a straightforward generalization of the
methods of Sec. IV B. That is, there is nothing to stop one
from using the Hamiltonian representation of Eq. (45), set-
ting up a large box, and following the time evolution of the
Schrodinger equation

i�h
@

@t
wðx; yÞ ¼ Ĥwðx; yÞ; (56)

using FDTD methods just as above.

However, this calculation is not likely to be terribly infor-
mative. Regardless of how sharply peaked the beam par-
ticle’s spatial wavefunction begins, it will tend to become
increasingly broad with time.11 Understanding the final state,
then, will require us to take the spatial Fourier transform of
the spread-out wavefunction in x to disentangle probabilities
for possible measurements of entangled harmonic oscillator
and beam momentum states.

Of course, we might start out with a partially transformed
wavefunction �wðkx; yÞ and time evolve that using FDTD.
However, the equation of motion for this

i�h
@

@t
�wðkx; yÞ ¼

�h2k2
x

2m
� �h2

2l
@2

@y2
þ 1

2
lx2

0y2

 !
�wðkx; yÞ

� affiffiffiffiffiffi
2p
p y�f ðkxÞ � �wðkx; yÞ; (57)

involves a convolution in each time-step

�f ðkxÞ � �wðkx; yÞ ¼
ðþ1
�1

dk0 �f ðk0Þ �wðkx � k0; yÞ; (58)

which is possible, but which (as discussed below) would
obscure the x-dependence and would make it difficult to dis-
tinguish between the “initial” and “final” states.

C. Approximate solution

In the parts of the wavefunction wðx; yÞ where the beam
position x� 0 and f ðxÞ � 0, we should expect the “initial”
wavefunction to be essentially that defined in Eq. (47), up to
a phase factor. When the beam energy is much greater than
the magnitude of the interaction energy, we should expect
very little of the beam’s incoming wave to be reflected.
When the beam reaches the region x� 0 where again
f ðxÞ � 0, the beam and oscillator once again will evolve
without interaction. In this region, the “final” wavefunction
could be sampled over a large range with x� 0 and the
Fourier transform could be taken in x to disentangle the out-
come probabilities.

To visualize this, we may construct an approximate first-
order wavefunction for the scattering states.12 From our first-
order results, we may write13

jwf ðkx; y; tÞi � jk0ixj0iy þ d1

ffiffiffiffiffi
P1

p
jk1ixj1iy

� �
e�iEit=�h;

(59)

where Ei is just the system energy established in Eq. (47), d1

is a complex phase factor with jd1j ¼ 1, and the relationship
between k0 and k1 is set by Eq. (52).

In this “final” region where x� 0, there will be negligible
further interactions between the beam and the oscillator.
Hence, the probability density of this approximate solution
will not evolve further in time

hwf jwf i � dkx;k0
jw0ðyÞj

2 þ P1dkx;k1
jw1ðyÞj

2: (60)

This is plotted in Fig. 4, using the same parameters as in
Fig. 3, albeit with the kx-states broadened for visibility.
Visualized in this way, it is easy to imagine these possibili-
ties as distinct “branches” of the wavefunction.

If this final state density is stationary in time, how would
one go down from the higher-level descriptions of wðx; yÞ or
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�wðkx; yÞ to the less informative descriptions of wðyÞ or just
the classical x and y? This is the essential question of com-
plementarity, to which we now turn.

VI. COMPLEMENTARITY

How might one relate the fully quantum approach to the
partially quantum approach? The fully quantum approach of
Sec. V uses maximally dispersed plane waves states to
describe the beam, while the partially quantum approach of
Sec. IV treats the beam as a classical particle whose position
is sharply defined at all times. Yet the reduced wavefunction
wðyÞ should follow:

wðyÞ ¼
ðþ1
�1

dx wðx; yÞ: (61)

What assumptions might allow this to be true?
Thinking it through more carefully, we can integrate out x

on both sides of the two-particle Schrodinger equation (Eq.
(56)) to obtain a correct expression for the dynamics of wðyÞ,
assuming that the wavefunction and its derivatives vanish at
infinity. In this case, we find that

i�h
@

@t
wðyÞ ¼ � �h2

2l
@2

@y2
wðyÞ þ 1

2
lx2

oy2wðyÞ

�
ðþ1
�1

dx a y f ðxÞwðx; yÞ: (62)

Comparing this to the Hamiltonian of the partially quantum
approach (Eq. (27)), we can see that the only difference will
occur in the interaction terms of the two approaches. Setting
these terms equal, we findðþ1

�1
dx f ðxÞwðx; yÞ � f ðvtÞ

ðþ1
�1

dx wðx; yÞ: (63)

In other words, for the partially and fully quantum
approaches to agree, f(x) must both be moved outside the

integral, which is reasonable only if f(x) varies much more
slowly in x than wðx; yÞ, and must also follow f ðxÞ � f ðvtÞ,
which is reasonable only when x is near hxi, presuming that
hxi � vt. Since the region near hxi is also where the interac-
tion term will be most significant to the dynamics of the
combined wavefunction, such an approximation may be less
egregious than it first seems.

On a more limited level, how might we recover the time-
dependence of w�ðyÞwðyÞ when our approximate hwf jwf i
appears to be stationary in time? Here, we need to integrate
out the jkix parts of jwðkx; y; tÞi, including their time depen-
dence. We can do this reduction explicitly for our approxi-
mate final-state wavefunction, Eq. (59)

jwðy; tÞi ¼
X

kx

hkxjeiEkt=�hjwðkx; y; tÞi

¼ j0iye�ix0t=2 þ d1

ffiffiffiffiffi
P1

p
j1iye�3ix0t=2: (64)

An easy way to check that this reproduces the dynamics of
wðyÞ as calculated in Sec. IV is to obtain the expected value
of y. For our reduced approximate wavefunction (Eq. (64)),
we can calculate hyi as

hwðy; tÞjyjwðy; tÞi ¼
ffiffiffiffiffiffiffiffiffiffi
2�hP1

lx0

s
Re d1e�ix0t
� �

: (65)

The amplitude of the oscillation for this expected value
exactly matches the amplitude of the classical displacement
for the oscillator [Eq. (34)], just as it should.

The single-particle wavefunction wðyÞ can also be linked
to the classical oscillator displacement y using Ehrenfest’s
theorem.14 For any quantum operator Â, Ehrenfest’s theorem
predicts

d

dt
hÂi ¼ 1

i�h
h Â; Ĥ
� �

i þ


@Â

@t

�
: (66)

We may apply this machinery to connect the partially
quantum approach to the classical approach. Using the
Hamiltonian, Eq. (27) and the position-momentum commu-
tator, Eq. (28), we can easily calculate

p̂y; Ĥ
h i

¼ þi�h �lx2yþ af ðvtÞ
	 


; (67)

which can be inserted into Eq. (66) to yield

dhp̂yi
dt
¼ �lx2

0hyi þ af ðvtÞ: (68)

This can be compared with the classical equation

dpy

dt
¼ �lx2

0yþ af ðvtÞ; (69)

demonstrating that hp̂yi and py follow the same dynamics.
The same exercise can be carried out for hyi and y, and the
first-order equations in time can then be combined to yield
second-order equations a la Eq. (4).

VII. ENTANGLEMENT

Schroeder has pointed out that interactions in quantum
systems generically introduce entanglement.2 Returning to

Fig. 4. A schematic visualization of the two-particle wavefunction density,

before (left) and after (right) scattering.
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the approximate final-state wavefunction of Eq. (59), we can
easily confirm that the state is indeed entangled, since it can-
not be written as the product of single-particle wavefunctions.
How, then, would our expectations about measurements be
altered by the order in which we measure the oscillator and
the beam?

In the usual way of discussing quantum mechanics, the
wavefunction jwi “collapses” upon measurement.15 The
modified wavefunction post-measurement jw0i can be written
in terms of a projection operator P̂ as

jw0i ¼ P̂jwiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hwjP̂jwi

q : (70)

The projection operator, here, collapses the wavefunction
into a determinate state for whatever relevant quantity has
just been measured, and the denominator serves to reinforce
normalization on the collapsed wavefunction.

Measuring one particle in a system but not the other
requires us to alter the final state wavefunction using a par-
tial projection operator.16 For instance, where we first to
measure the final momentum of our beam particle with a
value k1, the projection operator,

P̂k1
¼ jk1ihk1jx � 1̂y; (71)

could be applied to our wavefunction approximation (Eq.
(59)) to produce a post-collapse wavefunction of

jw0i ¼ jk1ixj1iy; (72)

where we have omitted the factor of d1e�iEit=�h, since this is a
phase factor of unit magnitude. Notice, then, that any subse-
quent predictions for the oscillator would simply match those
of its first energy eigenstate.

Likewise, where we first to measure the oscillator’s dis-
placement as y0, we could update our wavefunction using the
projection operator

P̂y0 ¼ 1̂x � jy0ihy0jy; (73)

which, realizing that hy0jniy ¼ wnðy0Þ, would lead to the
updated wavefunction (again, omitting a phase factor) of

jw0i ¼
w0ðy0Þjk0ixjy0iy þ d1

ffiffiffiffiffi
P1

p
w1ðy0Þjk1ixjy0iyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jw0ðy0Þj
2 þ jw0ðy0Þj

2
q : (74)

From this, we find that a measurement of y0 far from the ori-
gin increases the probability that the beam has reduced its
momentum from k0 to k1, since the oscillator’s ground-state
wavefunction w0ðyÞ (Eq. (35)) has thinner tails than the
excited-state wavefunction w1ðyÞ (Eq. (36)).

These results are summarized in Fig. 5, which uses all the
same model parameters as in Figs. 3 and 4. If the beam
momentum is measured first, this changes our predictions for
the oscillator displacement probabilities. If the oscillator dis-
placement is measured first, this changes our predictions for
the beam momentum probabilities.

While such claims are undoubtedly of academic interest,
we should concede how minimally they bear on most real
experiments. To make an analogy with real experiments, the

“oscillator” is just the sample being studied, and the “beam”
is just the probe being used. Given the results of Fig. 5, why
is the order of quantum measurements not a critical part of
all experimental protocols?

It is because any “measurement” typically involves further
interactions and, thus, further branching and entanglement.
The entanglement of the sample with the probe allows exper-
imental measurements of the probe to tell us something
about the sample,17 but it typically is difficult to make fur-
ther measurements on the sample that preserve quantum
coherence. After all, most quantum systems whose positions
can be pinned down (e.g., an atomic defect in a crystal) inter-
act with their substrates and the beam alike, and the intru-
sions of environmental decoherence conspire to obviate the
need for such worries.18

VIII. CONCLUSION

What, then, has been learned? Three complementary
approaches to a simple model Hamiltonian yield results that
conceptually differ, but quantitatively match. In the classical
approach, the beam particle transfers a predictable quantity
of energy to the oscillator as it passes. When the classical
oscillator is replaced by a quantum oscillator, the quantum
oscillator’s displacement expectation value oscillates with an
amplitude matching that of the classical oscillator, and the
quantum amplitude of the first excited state has a magnitude
that is directly proportional to the classical amplitude. When
both the beam particle and the harmonic oscillator are treated
as quantum objects, however, the interaction between the
two objects induces entanglement. The conditions allowing
these three approaches to match were explored, and the con-
sequences of partial wavefunction “collapse” on measure-
ments of entangled systems were demonstrated.19
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Fig. 5. Left: If the beam momentum is measured first as �hk0 (top left), the

oscillator displacement predictions can be found by integrating over the

ground-state wavefunction jw0ðyÞj
2
. If the beam momentum is measured first

as �hk1 (bottom left), the oscillator displacement predictions can be found by

integrating over the excited-state wavefunction jw1ðyÞj2. Right: Given a

measurement of oscillator displacement y0, smaller magnitudes of y0 increase

the probability of measuring the beam in its original momentum state �hk0

(top right), and larger magnitudes of y0 increase the probability of measuring

the beam in its reduced momentum state �hk1 (bottom right).
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APPENDIX: CLASSICAL WORK CALCULATION

To calculate the classical work done on the beam as it
passes the harmonic oscillator, one can rewrite the work inte-
gral as an integral over time

Wbeam ¼
ðþ1
�1

dx 	 Fx ¼
ðþ1
�1

vdt ayðtÞ 1
v

df

dt

� �
;

insert y(t) (from yðxÞ in Eq. (9)) as an inverse Fourier
transform

Wbeam¼a
ðþ1
�1

dt
1ffiffiffiffiffiffi
2p
p

ðþ1
�1

dxe�ixt �a~f ðxÞ
lðx2�x2

0Þ

 !
df

dt

" #
;

and reverse the order of the time and frequency integrals

Wbeam ¼ �
a2

l

ðþ1
�1

dx
~f ðxÞ

ðx2 � x2
0Þ

1ffiffiffiffiffiffi
2p
p

ðþ1
�1

dt e�ixt df

dt
:

The time integral can be made into the complex conjugate of
a Fourier transform after an integration by parts, and the fre-
quency integral may be performed by slightly displacing the
poles off the real axis by i�,

Wbeam ¼ �
a2

l

ðþ1
�1

dx
~f ðxÞð�ixÞ~f �ðxÞ

ðx� x0 þ i�Þðxþ x0 � i�Þ :

Using the residue theorem, we find

Wbeam ¼ �
pa2

l
j ~f ðx0Þj2: (A1)

This is the expression reported above in Eq. (10).
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