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ABSTRACT

Recent improvements in energy resolution for electron energy-loss spectroscopy in the

scanning transmission electron microscope (STEM-EELS) allow novel effects in the

low-loss region of the electron energy-loss spectrum (∆E < 10 eV) to be observed.

This dissertation explores what new information can be obtained with the combina-

tion of meV EELS energy resolution and atomic spatial resolution in the STEM. To

set up this up, I review nanoparticle shape effects in the electrostatic approximation

and compare the “classical” and “quantum” approaches to EELS simulation. Past

the electrostatic approximation, the imaging of waveguide-type modes is modeled in

ribbons and cylinders (in “classical” and “quantum” approaches, respectively), show-

ing how the spatial variations of such modes can now be imaged using EELS. Then,

returning to the electrostatic approximation, I present microscopic applications of

low-loss STEM-EELS. I develop a “classical” model coupling the surface plasmons

of a sharp metallic nanoparticle to the dipolar vibrations of an adsorbate molecule,

which allows expected molecular signal enhancements to be quantified and the re-

sultant Fano-type asymmetric spectral line shapes to be explained, and I present

“quantum” modelling for the charged nitrogen-vacancy (NV−) and neutral silicon-

vacancy (SiV0) color centers in diamond, including cross-sections and spectral maps

from density functional theory. These results are summarized before concluding.

Many of these results have been previously published in Physical Review B. The

main results of Ch. 2 and Ch. 4 were packaged as “Enhanced vibrational electron

energy-loss spectroscopy of adsorbate molecules” (99, 104110), and much of Ch. 5

appeared as “Prospects for detecting individual defect centers using spatially resolved

electron energy loss spectroscopy” (100, 134103). The results from Ch. 3 are being

prepared for a forthcoming article in the Journal of Chemical Physics.
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Chapter 1

INTRODUCTION

1.1 The Story of the Elephant

Children around the globe are taught some version of the fable of the blind men

and the elephant. This is the fable in which a few blind men (or, in another version,

a few sighted men in a dark room) all encounter an elephant, and, as elephants are

typically bigger than men, each man happens upon a different part of the animal.

Depending on the part that each man encounters, each comes to a different conclusion

about its nature, with the man who finds the elephant’s leg concluding that the

elephant is like a tree, the man who finds the elephant’s trunk concluding it is like

a snake, and so on. Usually, this fable ends with a call to epistemic humility. In

versions striving toward profundity, the elephant is sometimes identified as God.

But in a scientific version of this fable, the elephant might stand in for what-

ever physical systems we might wish to study, and the blind men’s differing grasps

might stand in for all our different methods of studying such systems—from passive

observations of the night sky, to the active bombardment of materials with electron

beams. In the scientific version, we might further imagine that the blind men are

able to collaborate. This modified version of the story has a different moral than the

original one, since, by each sharing their findings, these local elephant investigators

are collectively able to form a stable global picture of the underlying elephant.

Outside the academic setting, but during the time the research contained in this

dissertation was conducted, I have argued, variously, that science alone cannot give

evidence for whether or not God exists (Kordahl (2017)), that the “truth” of a scien-
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tific theory may depend on its historical context (Kordahl (2018)), and that physics

should not be seen as driving toward a single, fixed goal (Kordahl (2019)). Regardless,

here I discuss systems whose underlying forms have been the subject of shared re-

search interest by many investigators, preventing much of the radical doubt that some

scientific questions invite. Since the basic forms of these systems are not in question,

the relevant questions then become higher-order ones of what sorts of signals such

systems might generate, and of whether such signals are detectable.

This dissertation is concerned with just one method of the proverbial elephant-

bothering—namely, that of electron energy-loss spectroscopy in the scanning trans-

mission electron microscope (STEM-EELS). STEM-EELS is a versatile technique

for studying materials, and can probe both their collective and atomistic properties.

Chapters 2 and 3 discuss effects that arise from the collective properties of nanostruc-

tures—in particular, effects that can be captured by a local dielectric description, in

the electrostatic (Ch. 2) and electrodynamic (Ch. 3) versions of the theory. Chapters

4 and 5 discuss atomistic properties—in particular, the way that vibrational signals

from an adsorbate can be enhanced by a nanoparticle substrate (Ch. 4), and the way

that individual point defects might be located in bulk materials (Ch. 5).

To set this up, in this introduction I briefly review the motivation for this disser-

tation, summarizing a bit of history, a bit of theory, and a bit about our elephants.

1.2 A Brief History of STEM-EELS Microscopes

In modern tellings, the idea of electron microscopy is sometimes presented as an

obvious extension, on the one hand, of Abbe’s theory of how waves can combine to

form images, and, on the other, of de Broglie’s insight that electrons have a wavelike

nature. In a paper on the modern theory of electron optics, Rose (2008) recounts that

Abbe himself suspected there might be some way to overcome the wavelength-based

2



limits on resolution mandated by imaging with visible light, but as Mulvey (1962)

reveals, history is often more tangled than any conceptual reconstruction. When Hans

Busch discovered that a solenoid’s magentic field could act on electrons in much the

same way as a convex lens acts on light, he connected his theory to geometric optics,

not Abbe theory, and Max Ruska (1986) recounted that when he and Max Knoll

built their electron microscope prototype, they were not aware of resolution limits for

electrons. “As engineers we did not know yet the thesis of the ‘material wave’ of the

French physicist de Broglie that had been put forward several years earlier.”

Nevertheless, by the end of the 1930s, the transmission electron microscope (TEM)

had been developed to the point where the basic theory was understood, and where

achievable magnifications on commercially available TEMs surpassed those of the

best light microscopes. Not long thereafter, the first recognizable results in the style

of STEM-EELS were presented by Hillier and Baker (1944). In this work, Hillier and

Baker discussed their efforts to focus an electron beam on a selected sample region,

and to separate outgoing electrons using a magnetic prism according to the how much

energy each had lost in transit, which was identified as the energy each electron had

given up to promote electronic transitions of elements in the sample.

While important work on developing the TEM continued in the years that fol-

lowed, including the foundational work on resolution limits by Scherzer (1949), early

histories (e.g., Big (1956)) mark the electron microscope mainly as a tool for biologists.

The development of STEM-EELS as a technique for materials characterization is the

often identified as having been spurred on by the microscope design improvements

pioneered by Crewe et al. (1968). A first-person account of the changes in instrumen-

tation and their consequences in the decades that followed is given by Egerton (2012),

who briefly reviews how changes like the shift from photographic to digitized spectra

opened up new opportunities for increased rigor in the interpretation of results.
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Then, as now, STEM-EELS applications were often characterized as either “low

loss,” with energy losses in the tens of eVs, or “core loss,” with energy losses in the

hundreds of eVs. This dissertation is focused on low-loss applications, although in-

terest in the STEM-EELS traditionally has been heavily weighted toward core-loss

applications. At the end of the last century, a review article on core-loss EELS (Silcox

(1998)) could claim an impressive range of accomplishments, in terms of instrumen-

tation (with probe sizes down to a few ångstroms and energy resolution down to a

few eV), theory (with atomic cross-sections under various approximations available

for quantitative comparison), and applications (ranging from the characterization of

high-Tc superconductors to detailed studies of grain boundaries in alloys).

But this was far from the end of the story. Real electron lenses, like real glass

lenses, are plagued with various imperfections, from the failure to converge waves

from single points in the object plane to single points in the image plane, as in

spherical aberration; to the failure for waves of equal momenta in the object plane

to reach single points in the diffraction plane, as in chromatic aberration; to the

failure of a lens to maintain circular symmetry, as in coma or astigmatism. In recent

decades, such issues in electron optics have been confronted directly. Rose (1971)

established early on that the spatial resolution limits marked by Scherzer (1949) for

circularly symmetric lenses would not apply to multipole lenses, but it took decades

of development for this insight to become useful. Spherical aberrations were first

corrected by Haider et al. (1998), and soon thereafter Batson et al. (2002) reported

the first computer-aided aberration-corrected setup with sub-̊angstrom resolution,

leading to a period of intense interest in atomically-resolved STEM-EELS.

Likewise, energy resolution limits were pushed by the incorporation of monochro-

mators, which spatially disperse the electron beam according to kinetic energy and

select only those electrons with appropriate beam energies by passing them through a
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narrow slit. Kimoto (2014) reviews the significant commercial designs. FEI designed

a monochromator using a single Wein filter (a region of crossed magnetic and elec-

tric fields whose Lorentz force vanishes only for a specific energy of electron passing

through it) which disperses the electron beam before it goes through the accelera-

tion tube, and uses a selector slit after acceleration. JEOL improved on this with a

model whose selector slit was before the acceleration tube, sandwiched between two

Wein filters, correcting for spatial chromaticity (i.e., for energy dispersion in the final

image). CEOS’s “omega-type” monochromator, so called for the bent path electrons

take through it, introduces spatial dispersion with electrostatic elements, and man-

ages to correct not only for spatial but also for angular chromaticity resulting from

electrons of different directions having different energies.

These designs all have their spatially dispersive elements before the acceleration

tube, which allows any instabilities in the accelerating voltage to be reflected in

the electron beam. To fix this, Krivanek et al. (2009) developed an “alpha-type”

monochromator, again named for the beam electron’s path, whose design differs

markedly from the others in that its elements are all implemented after the beam

has already been accelerated. This requires extra multipole lenses to make the slit

selection feasible for the high-energy beam, and allows the monochromator to func-

tion at ground voltage. For beam energies of 100-200 keV, this monochromator was

designed to attain ∼10 meV resolution for a beam focused to ∼1 Å2, a goal that was

achieved in microscopes built by the Nion company, allowing vibrational STEM-EELS

signals to be observed for the first time (Krivanek et al. (2014)).

This dual achievement of high spatial and energy resolution in STEM-EELS forms

the backdrop, and the motivation, for the work documented in this dissertation, and

has led to many groundbreaking STEM-EELS studies on the vibrational properties

of materials, including the work of Miyata et al. (2014), Nicholls et al. (2015), Dwyer
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et al. (2016), Rez et al. (2016), Lagos et al. (2017), Hage et al. (2019), Venkatraman

et al. (2019), Senga et al. (2019), and Hage et al. (2020). This renewed interest in

low-loss phenomena has reopened once-settled questions to a new era of investigation.

1.3 A Brief History of Low-Loss Theory

Much of the interest in STEM-EELS as an experimental technique arises from

its ability to aide in atomic-scale materials characterization. The quantitative theory

of atomically-resolved imaging in STEM-EELS has been reviewed in some detail by

Dwyer (2013) and Allen et al. (2015). This dissertation, however, with its focus on

low-loss STEM-EELS, needs only to brush against that literature long enough to

establish how the (mostly classical) low-loss models and the (mostly quantum) core-

loss models can be seen as two complimentary ways of tickling the same elephant.

An early classical calculation in the modern style was carried out by Fermi (1940),

who wished to calculate the energy loss per distance traveled for a charged particle

passing through water or air. He treated the loss medium as a uniform material with

a dielectric constant and treated the charged particle as having a fixed speed. After

introducing an imaginary tube around the beam (effectively a spatial cutoff, keeping

the potential energy of the point-like classical electron from diverging), he calculated

the energy flowing outward by integrating over the Poynting vector.

Scattering of electrons by many-body quantum systems is, in principle, a difficult

problem, and it is not immediately obvious how the quantum-mechanical description

of an electron’s interaction with various materials might relate to the classical de-

scription. The early work of Bohm and Pines (1953) on plasma oscillations in metals

showed that normal modes of many-body systems could be related to the underlying

quantum theory. But it was not until Hubbard (1955) showed how the long-ranged

dynmaics of conduction electrons could be captured in the parameters of the Drude
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model for metals that the well-developed dielectric models of classical electrodynam-

ics could be interpreted in the light of quantum theory. This allowed the process of

calculating spectra to be simplified, and led Ritchie (1957) to predict the existence

of surface plasmons in metallic foils.

These early treatments laid the foundation for most subsequent work in the clas-

sical style, whose schematic outline is easy enough to present. The beam, in this

treatment, is treated as a point charge running along z at a constant speed v:

ρce(x, z, t) = −eδ2 (x− x0) δ (z − vt) (1.1)

The sample gives rise to an electric field Eind (i.e., the total electric field minus the

electric field associated with the beam electron). To solve for Eind, it is convenient to

Fourier-transform the field of the beam electron into frequency-space before applying

spatial boundary conditions. After the inverse transform, the work done on the beam

electron by the z-component of Eind is found using “force times distance”:

−W =
e

2π

∫ ∞
−∞

dz

[∫ ∞
−∞

dω exp(−iωt)Eind
z (x, z, ω)

]
x=x0,z=vt

. (1.2)

To obtain an expression for the EEL spectrum, we can switch the order of the ω and

z integrals and rewrite the ω integral over a positive domain

−W =

∫ ∞
0

dω(~ω)Re

[
e

π~ω

∫ ∞
−∞

dz exp(−iωz/v)Eind
z (x0, z, ω)

]
, (1.3)

which allows the integrand to be interpreted as a STEM-EELS spectrum:

dP

dω
=

e

π~ω
Re

[∫ ∞
−∞

dz exp(−iωz/v)Eind
z (x0, z, ω)

]
. (1.4)

Decades of subsequent applications have proven the utility of this approach.

A summary of this work was undertaken by Wang (1996), and more recently by

Garćıa de Abajo (2010). Recent developments in this vein have been reviewed by
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Talebi (2018). Calculations in this style will take up much of Ch. 2 and Ch. 4

below, so it is important here to linger on how this approach is consistent with the

quantum-mechanical approach usually applied in modeling core-losses.

The “quantum” approach to low-loss STEM-EELS involves writing out the singly-

occupied normal modes of the sample |1n〉, scaled to have energy ~ωn, allowing for

conceptually similar methods to be used in low-loss and core-loss STEM-EELS. The

possibility of writing down such modes was pointed out in the classic work of Fuchs

and Kliewer (1965), who worked out the modes of the dielectric slab in the elec-

trostatic limit, then in a fully relativistic treatment (Kliewer and Fuchs (1966a,b)).

Englman and Ruppin (1966) showed how these results could be generalized to any

canonical geometry, and Lucas and Šunjić (1972) showed how the dielectric modes of

the slab could be probed using STEM-EELS, clearing the way for investigations of

many other geometries.

So how, roughly, does one obtain a result of the sort given by Eq. 1.4 in this

context? Early on in the development of scattering theory, Frame (1931) established

that an α-particle exciting an atomic transition could be treated either as a quantum

object or as a classical charge center without altering the transition probability ob-

tained, given the large mass of the α-particle relative to that of the atomic electrons.

For typical beam energies considered with STEM-EELS (10-300 keV), a similar ob-

servation applies for inelastic electron scattering from low-loss normal modes (0-10

eV), since the beam energy is over a thousand times that of the considered losses.

Treating the beam classically leads to the correct approximation for the first-order

transitions, even as we conceede that this cannot be the entire story.

As before, it is simple enough to outline the quantum approach schematically.

Suppose that a sample is initially in its ground state |0〉. To construct the STEM-

EEL spectrum, we would like to calculate its probability of transition to the single-
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occupancy state |1n〉 in the presence of the beam, where n is a label for the state’s

quantum numbers. If each state has an associated classical potential Φn(r) exp(iωnt)

whose scaling matches the energy normalization, we can write the beam-sample in-

teraction potential in terms of undetermined coefficients cn as

VI(t) =
∑
n

cn

∫
d3r ρce(r, t)Φn(r) exp(iωnt) (1.5)

where ρce(r, t) is just the expression given by Eq. 1.1. We can then use first-order

perturbation theory to solve for c
(1)
n

c(1)
n =

1

i~

∫ ∞
−∞

dt

∫
d3r ρce(r, t)Φn(r) exp(iωnt), (1.6)

which, upon squaring, leads to a probability of transition to state |1n〉:

P c
n(x0) =

( e

~v

)2
∣∣∣∣∫ ∞
−∞

dz exp(iωnz/v)Φn(x0, z)

∣∣∣∣2 . (1.7)

Since energy is conserved overall, the energy gained by the sample is the energy lost

by the beam, and the STEM-EEL spectrum is written as

dP

dω
=
∑
n

P c
n(x0)δ(ω − ωn), (1.8)

where the delta functions can be replaced by distributions whose width is related to

the imaginary part of ωn when states have a finite lifetime.

Even if we recast the transition probabilities Pn in terms of the electric field

Pn =

(
e

~ωn

)2 ∣∣∣∣∫ ∞
−∞

dz exp(iωnz/v)Eind
z,n(x0, z)

∣∣∣∣2 , (1.9)

it is not obvious from the notation that the expression for the classical expression

(Eq. 1.4) must match the quantum expression (Eq. 1.8) in the limit of a real ε(ω). In

Sec. 2.4, however, we show how this equivalence can be established for a specific case,
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that of the sphere with a model dielectric function that respects causality, a result

supported by more general arguments in Wang (1996).

In core-loss simulations, the initial and final states of a system both must be

explicitly considered, a point that is revisited in Sec. 5.2 below. This issue is often

ignored in low-loss simulations, as the ground state |0〉 contributes no macroscopic

electric field. For much of the work that follows, the level of approximation presented

above is already sufficient. Lucas and Šunjić (1972) considered the possiblity of

multiple occupancy states in the dielectric slab (i.e., |2n〉, |3n〉,...), but concluded that

probabilities were very small for electrons at normal incidence. Corrections accounting

for the probe size have been found to have only modest effects if one supposes that

all inelastically scattered electrons are collected. Using the first Born approximation,

Ritchie (1981) established that broad-beam illumination would merely reproduce the

results for a classical beam, only averaged over the area of illumination.

Later, Ritchie and Howie (1988) extended this analysis to investigate a beam

whose wavefunction profile in the sample plane is described by φ(x). They found that

the corrected quantum-beam transition probabilities could be expressed in terms of

the classical-beam transition probabilities as

P q
n(x0) =

∫
d2x |φ(x− x0)|2 P c

n(x0), (1.10)

that is, in terms of a 2D convolution with the probability density of the electron in

the sample plane. Hence, if the features we wish to probe are larger than the beam

size (as now is often the case, given the impressive strides in instrumentation outlined

above), it is reasonable to use the delta-beam approximation.
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1.4 A Preview of Our Elephants

This introduction has barely scratched the surface of the possible subjects, even

within the constrained scope of STEM-EELS. There exist many fine overviews of

high-resolution electron microscopy from which one may contextualize the current

state of research, including the books by Kohl and Reimer (2008) and Spence (2009),

and and a full-volume treatement of EELS technique by Egerton (2011). Introductory

treatments of STEM-EELS by Egerton (2008) and Eljarrat et al. (2019) also provide

helpful overviews, and the first volume of Science of Microscopy (Hawkes and Spence

(2007)) gives a long view on the history of microscopy in its introduction, and specific

STEM-EELS discussions in Ch. 2. But what we have is enough already to proceed.

Here is a brief overview of the topics discussed in the chapters that follow.

In the second chapter, the simple physics of frequency-dependent dielectrics is

discussed in terms of the Born-Huang model, and the surface modes of canonical

dielectric geometries are treated in the electrostatic approximation. The electrostatic

surface modes are solutions to Laplace’s equation, and occur at frequencies for which

the real part of the dielectric function is negative, providing a restoring force. The

“classical” and “quantum” approaches are carried through for the slab, and are shown

to be equivalent for the case of the sphere. This analysis allows the important surface

modes to be identified for various canonical geometries, including those of oblate and

prolate spheroids, the latter of which is reused extensively in the fourth chapter.

In the third chapter, I discuss guided light modes of semi-infinite nanostructures,

modes that are not captured by the electrostatic approximation. Here I consider mod-

els with the beam running parallel to the material interface, leading to expressions of

d2P/dz dω. As before, one can study these modes either through “classical” methods

(i.e., using boundary conditions) or through “quantum” methods (i.e., using normal

11



modes). For the dielectric ribbon, these modes split into the familiar transverse elec-

tric and transverse magnetic (TE/TM) designations, which are conveniently studied

through “classical” methods. For the dielectric cylinder, the TE/TM modes become

become hybridized, which makes them more convenient to study through “quantum”

methods. The modal analysis for cylinders finds promising agreement with the expri-

mental results of Flauraud and Alexander (2019), whose data I explore.

In the fourth chapter, I return to the electrostatic approach, but use it to develop a

model for the coupling of adsorbates to metallic nanoparticles. This model captures

the electromagnetic signal effects described by surface-enhanced Raman scattering

(SERS), except in the context of STEM-EELS. In this model, the vibrational signal

from the surface molecule appears as a Fano-type resonance atop the nanoparticle’s

background signal. To achieve experimentally relevant results for signal and signal-to-

noise enhancements, the model molecule is positioned on the tip of a metallic prolate

spheroid, which enhances the electric field of the passing beam electron, not unlike

the effect of a lightning rod in a external field. This leads to signal enhancements

O(104) and signal-to-noise enhancements O(102), with even greater effects possible

when the nanoparticle is “tuned” to the frequency of the molecular vibration.

Finally, in the fifth chapter, I present results for the possibilities of imaging point

defects in diamond, based on the outcome of density functional theory calculations.

The point defects under consideration, the charged nitrogen-vacancy and neutral

silicon-vacancy defects, have spatial maps that can be intuitively interpreted using the

tight-binding approximation. These calculations give reason to believe that STEM-

EELS measurements should be able to localize such defects to about a nanometer,

and point the way forward toward single-defect detection for defects buried in bulk

samples, acting as a case study in first-principles quantum modeling for the simulation

of STEM-EELS signals. These results are briefly summarized before concluding.

12



Chapter 2

STEM-EELS OF ELECTROSTATIC MODES

2.1 Introduction

In Science Since Babylon, the historian of science de Solla Price (1975) distin-

guished between the prescientific attitudes of the Babylonians and of the Greeks.

The Babylonians, he argued, were adept at numerical calculations, accumulating de-

tailed schemes for precisely predicting the apparent motion of the planets, while never

proposing any compelling models to give their calculations meaning. The Greeks, on

the other hand, were advanced in conceptual argumentation, proposing models for

the planetary motions, even as their calculations were comparatively clumsy. Modern

science, argued de Solla Price, is the peculiar synthesis of these two styles of activity,

where precise numerical calculations meet conceptually satisfying arguments.

The first purpose of this chapter is to present an overview of two different ways

of calculating low-loss STEM-EELS spectra in the dielectric approach, under the

electrostatic approximation. The first of these approaches, the “classical” approach,

is more Babylonian in style, and the spectrum arises from the boundary conditions

as a more or less automatic result, without any necessary insight into the material

causes. The second of these approaches, the “quantum” approach, is more Greek in

style, requiring increased upfront effort, with interpretive insight as the dividend. As

we shall see, both approaches give equivalent results in the undamped limit, despite

their seeming conceptual differences, and I will use each where convenience serves.

The second purpose of this chapter is to present a unified approach to shape

effects in nanoparticles. The slab and the sphere act as two limiting cases, with
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the slab having the widest possible range of frequencies for its surface states, and

with the sphere having the narrowest possible range of frequencies for such surface

states. Using spheroids as intermediary geometries, it is possible to understand how

the surface states of the sphere evolve to those of semi-infinite geomtries, with the

sphere evolving toward the slab via the surface states of the oblate spheroid, and the

sphere evolving toward the cylinder via the surface states of the prolate spheroid.

A brief summary of the work in this chapter has been presented in Kordahl and

Dwyer (2019), which also contains much of the material developed in Ch. 4. In that

later chapter, it will become apparent how an understanding of these surface states

can lead to specific applications for nanoparticles.

This chapter is organized as follows. First, I review the simple model of dielectric

response proposed by Born and Huang (1954), a model that covers both the classical

Drude and Lorentz dielectric models. In contrast to the classic treatment of Born and

Huang, who limited their treatment to bulk samples, here the model is considered

in finite particles, for which suface effects are important. I discuss STEM-EELS

scattering from a dielectric slab, both in the “classical” and “quantum” calculations.

After showing how these methods can be generalized to other geometries, I show

how the two approaches are equivalent for aloof scattering from the sphere (that

is, for scattering where the beam does not penetrate the sphere itself), and argue

that this will be true generally where the imaginary part of the dielectric function

is small. Finally, I summarize how the important modes develop from one geometry

to another, emphasizing how shape effects arise from interactions between the beam

and oscillating surface charge.
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2.2 Born-Huang Model for Dielectrics

In modern texts on solid-state physics (cf. Cohen and Louie (2016)), the dielectric

function is typically presented as an instance of linear response theory. For a weak

enough perturbation, the electric potential Φin inside a material is screened linearly

with respect to the “external” potential Φext that has been introduced into the system

while not being contained within the dielectric response itself. The inverse dielectric

function ε−1(r, r′, t− t′) is introduced via a general two-point function as

δΦin(r, t) =

∫
dr′dt′ε−1(r, r′, t− t′) δΦext, (2.1)

which allows ε−1(r, r′, t − t′)—or, equivalently, for ε(r, r′, t − t′) with the roles of

Φin and Φext reversed—to capture a wide range of physical effects, including spatial

inhomogeneities and local anisotropies, as well as non-local quantum correlations, as

in the famous Lindhard dielectric function for the free electron gas.

My discussion of dielectrics will be restricted to the local dielectric description,

where the displacement field D(r, t) is related to the electric field E in a material as

D(r, t) =

∫
ε(t− t′)E(r, t′)dt′, (2.2)

which, having the form of a convolution in time, makes it convenient to solve many

dielectric problems in Fourier space:

D(k, ω) =

∫
d3r dt e−i(k·r−ωt)ε(t− t′)E(r, t′) = ε(ω)E(k, ω). (2.3)

Implicitly, Eq. 2.3 defines the form of the form of Fourier transforms used throughout

this document.
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Given the macroscopic Maxwell equations (Jackson (1999))

∇ ·D = 4πρf

∇ ·B = 0

∇× E = −1

c

∂B

∂t

∇×H =
4π

c
Jf +

1

c

∂D

∂t
,

(2.4)

and the constitutive relations for isotropic linear media

D = E + 4πP = εE

B = H + 4πM = µH

(2.5)

one can roll the effects of “bound” charge and current into ε and µ, respectively. The

conventional electric boundary conditions at dielectric interfaces(
Dout −Din

)
· n̂ = 4πσf(

Eout − Ein
)
× n̂ = 0

(2.6)

become especially simple in the absence of free charge, with σf = 0, and similarly for

the magnetic boundary conditions and Jf .

I will further restrict our attention to non-magnetic materials, where µ = 1,

and will work in the electrostatic approximation (that is, the approximation that

c→∞), which simplifies Maxwell’s equations brutally, setting the last three to zero

on the right-hand side. For uncharged particles characterized entirely by the dielectric

description, our problem reduces to solving Laplace’s equation:

∇2Φ(r, ω) = 4πρf(r, ω)/ε(ω). (2.7)

In STEM-EELS simulations, the “free charge” is typically just the beam electron.

Here I would like to develop a model dielectric in the framework of Born and Huang

(1954), whose theory comprises a pair of equations relating the ionic displacement u,

16



the polarization density P, and the macroscopic electric field Ein inside a particle.

The equations include four physical parameters—the transverse resonant frequency

ω0; the effective ionic charge Z∗0 ; the high-frequency dielectric constant ε∞; and a

damping parameter η—and are most legible in their explicitly time-dependent form:

Z∗0Ein = ü + 2ηu̇ + ω2
0u,

P = Z∗0u +
ε∞ − 1

4π
Ein.

(2.8)

This model is manifestly local, and each equation has a clear physical meaning. The

first treats the ionic displacements as a field of damped harmonic oscillators driven by

the macroscopic electric field. The second stipulates that these displacements cause

the polarization density, although the effects of fast-moving charges are rolled into

ε∞ and provide electronic screening.

More precisely, u is the displacement of ions from their equilibrium positions

multiplied by (µ/Ω)1/2, where µ is the reduced mass and Ω is the volume of the

of the ionic pair, and the effective charge Z∗0 is a measure of the split between the

low- and high-frequency limits of the dielectric function (ε0 and ε∞, respectively), or

equivalently of the the LO-TO split, where ω` is the bulk longitudinal frequency:

4π(Z∗0)2 = (ε0 − ε∞)ω2
0 = ε∞(ω2

` − ω2
0). (2.9)

If we suppose that u, P, and E are continuous and smooth functions inside the

particle with a time dependence of exp(−iωt), the two Born-Huang equations and

the electrostatic equations lead us to find an expression for ε(ω):

ε(ω) = ε∞
ω(ω + 2iη)− ω2

`

ω(ω + 2iη)− ω2
0

. (2.10)
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Figure 2.1: The dielectric function ε(ω) for the Born-Huang and Drude models,
with real (red) and imaginary (blue) parts. In the Born-Huang model a vanishing
real part specifies the longitudinal frequency ω`, while in the Drude model it relates
to the model plasma frequency ωp.

As has been recognized by others (e.g., Lucas and Šunjić (1972); Lourenço-Martins

and Kociak (2017)), this model is formally equivalent to the Drude model for metals

in the case where the oscillators have no restoring force, and with limits

ω0 → 0, 4π(Z∗0)2 → ωp. (2.11)

Just as the Born-Huang model describes isotropic insulators (e.g., lithium flouride or

cubic boron nitride), the Drude model describes noble metals (e.g., silver or gold).

Hence plasmons function as longitudial optical phonons in the long-wavelength limit,

and many results for plasmons translate to the vibrational context. The Born-Huang

and Drude dielectric functions are compared in Fig. 2.1. In the next section, I apply

Eq. 2.10 to the slab geometry in two different methods of solution.
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Figure 2.2: Slab geometry, with potential expansions labeled above and below the
slab (green) and within the slab (yellow). Boundary conditions for the upper and
lower surfaces are written above and below the slab, respectively.

2.3 Case Study: The Semi-Infinite Slab

2.3.1 “Classical” Approach

The electrostatic approximation is not a particularly good one for the semi-infinite

slab (the foil’s infinite transverse extent makes retardation effects important), but I

have chosen this geometry for its pedagogical ease. In the electrostatic approximation,

magnetic fields do not contribute, and we can describe all effects in terms of the

electric potential. We impose periodic boundary conditions on the foil’s induced

potential in x and y and and assume it will approach zero as z → ±∞. Since
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this induced potential must follow Laplace’s equation, we can expand it in harmonic

functions above (Φfoil
+ ), inside (Φfoil

0 ), and below (Φfoil
− ) the foil:

Φfoil
+ (r, ω) =

∑
k⊥

Uk(ω) exp(−kz) exp(ik⊥ · x)

Φfoil
0 (r, ω) =

∑
k⊥

(Ak(ω) exp(−kz) +Bk(ω) exp(+kz)) exp(ik⊥ · x)

Φfoil
− (r, ω) =

∑
k⊥

Dk(ω) exp(+kz) exp(ik⊥ · x),

(2.12)

where now x = (x, y), k⊥ = (kx, ky), and k = |k⊥|. This particular expansion has

no specific content, except to insist that the foil potential Φfoil must obey Laplace’s

equation and must remain finite in each region. Fig. 2.2 illustrates this geometry

alongside its associated expansions and boundary conditions.

For this expansion to help us to determine the unfixed coefficients, we need to

expand our electron potential in terms of the surface functions—that is, in terms of

exp(ik⊥ ·x). For the beam electron traveling along z = v0t and fixed at x0 = (x0, y0),

we can easily write down the unretarded potential as a function of time:

Φe(r, t) = (−e)
∫
d3r′

1

|r− r′|
δ2(x′ − x0)δ(z′ − vt). (2.13)

This peculiar form allows the spatial transform of the Coulomb part and the delta-

function part of this expression to be taken separately, by the convolution theorem,

such that

Φe(k, t) = (−e) 4π

k2
⊥ + k2

z

exp(−ik⊥ · x0) exp(−ikzvt), (2.14)

which in turn makes the time transform straightforward:

Φe(k, ω) = (−e) 8π2

k2
⊥ + k2

z

exp(−ik⊥ · x0)δ(ω − kzv) (2.15)

If we transform back to position space, the unperformed integrations over k⊥ give an
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expansion in the same terms as Eq. 2.12:

Φe(r, ω) = (−e)
∫

d2k⊥
(2π)2

4π

k2 + (ω/v)2
exp(iωz/v) exp(ik⊥ · (x− x0))

= (−e)
∑
k⊥

1

L2

4π

k2 + (ω/v)2
exp(iωz/v) exp(ik⊥ · (x− x0)).

(2.16)

We suppose that this form will be adequate to describe the beam potential above

and below the foil, but that it will need to be screened by 1/ε(ω) inside. Adding the

response potential to the beam potential, we find forms for the total electric potential

above (Φout
+ ), inside (Φin), and below (Φout

− ) the foil:

Φout
+ (r, ω) = Φe(r, ω) + Φfoil

+ (r, ω)

Φin(r, ω) = Φe(r, ω)/ε(ω) + Φfoil
0 (r, ω)

Φout
− (r, ω) = Φe(r, ω) + Φfoil

− (r, ω).

(2.17)

Applying the electric boundary conditions (Eqn. 2.6) to Φin and Φout leads us to four

independent equations for each k⊥. We can solve these to give us the coefficients of

our induced field. In principle, this gives us the electrical potential that acts back

on the beam electron. If we want the electron energy-loss, we only need to find

the integrated work performed on it by the induced potential, which we interpret as

energy transferred to the dielectric, as in Eq. 1.4.

Notice that the induced potential excludes Φe outside the slab, but it includes

(ε−1−1)Φe inside the slab as the source of the bulk modes, which leads us to the same

question that Fermi avoided by neglecting a small cylinder of radius b0 surrounding

the beam path—the question of how to avoid infinities. In the electrostatic context,

we address this by imposing a cutoff of K = 2π/b0 in Fourier-space. In general, we

should expect such explicit cutoffs whenever the beam passes through the dielectric.

The discussion above reproduces the basic structure of many papers in dielectric

EELS. In fact, just such an exposition is given by Lucas and Kartheuser (1970) for
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the dielectric slab, where they find neat expressions for the bulk and the surface losses

in the electrostatic limit. I will not reproduce their expressions for the surface losses,

as they are equivalent to the expressions I will derive below using the “quantum”

method. But finding the bulk losses using this method is very simple, compared to

the quantum method, so I briefly derive it here.

If we find the induced bulk electric field associated with (ε−1 − 1)Φe using the

integral expression in Eq. 2.16 and substitute it into the classical loss expression

(Eq. 1.4), we quickly obtain, for a slab of thickness T , that

dPB
dω

=

∫ K

0

dk
e2T

π~v2

2k

k2 + (ω/v)2
Im

(
−1

ε

)
. (2.18)

Performing the integral and using the Born-Huang expression for the dielectric func-

tion, this leads, in the limit as the damping η → 0, to the conclusion that

dPB
dω

=
e2T

2π~v2

ω2
` − ω2

0

ε∞ω`
log

(
K2 v

2

ω2
`

+ 1

)
δ(ω − ω`), (2.19)

i.e, that we obtain a spike in the spectrum at ω`, proportional to the sample thickness.

2.3.2 “Quantum” Approach

The quantum approach to such problems as the STEM-EELS scattering from a

dielectric slab often requires more effort upfront, for greater dividends down the road.

The primary roadblock for applications of this sort of model is the apparent need for

an underlying physical model in the form of a Hamiltonian that keeps track of the

various degrees of freedom that contribute to the dielectric response.

In unpublished work, Christian Dwyer has developed such a model for the Born-

Huang model, starting with the ionic particle Hamiltonian

H =

∫
V

dV

(
1

2
u̇2 +

1

2
ω2

0u
2 +

1

2
(ρ− ρ∞)Φ

)
, (2.20)
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where ρ and ρ∞ are the total and electronic polarization charge densities, respectively,

and Φ is the electric field potential. Because surface charges may be present in the

third term, the integral over the particle’s volume must include the particle surface.

The Helmholtz-Hodge decomposition (Van Bladel (1958)) allows any u to be writ-

ten as the sum of unique transverse, longitudinal, and harmonic components.

∇ · ut = 0 ∇× ut 6= 0

u ∝ ut + u` + uh ∇ · u` 6= 0 ∇× u` = 0

∇ · uh = 0 ∇× uh = 0

(2.21)

In the undamped, electrostatic Born-Huang model, it is straightforward to show that

the transverse modes have frequency ω0 but no associated electric fields. The longi-

tudinal modes have frequency ω`, where ω2
` = ε0ω

2
0/ε∞, and indeed have electric fields

that contribute to scattering. However, in the following discussion, I will restrict the

discussion to the harmonic modes, whose frequencies lie between ω0 and ω`. These

harmonic components only matter for finite particles, as their functional extrema

occur at the boundary of the region being decomposed.

In particular, what form will said scalar potentials will take? Periodic boundary

conditions will constrain the acceptable wavevectors in the xy-plane, where once again

x = (x, y), k⊥ = (kx, ky), and k = |k⊥|. The form outside the slab will be restricted

as we expect the potential to be finite as z → ±∞. Above the slab, we expect

φ+ ∝ exp(ik⊥ · x) exp(−kz), (2.22)

and below the slab, we expect

φ− ∝ exp(ik⊥ · x) exp(kz). (2.23)

Within the slab, φ can take forms that are symmetric and antisymmetric in z:

φc ∝ exp(ik⊥ · x) cosh(kz),

φs ∝ exp(ik⊥ · x) sinh(kz).

(2.24)
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The (lower energy) cosh-type and (higher energy) sinh-type modes are sometimes

referred to as the FK− and FK+ modes (for instance, by Lagos et al. (2018)), given

that these modes were first identified by Fuchs and Kliewer (1965).

Merely insisting on this form is enough to solve for the harmonic frequencies,

using the dielectric function Eq. 2.10 and the electrostatic boundary conditions. In

the damped limit as η → 0, we find that the cosh-type modes have lower frequencies

ωc = ω0

(
ε0 + coth(kT/2)

ε∞ + coth(kT/2)

)1/2

, (2.25)

and the sinh-type modes have higher frequencies

ωs = ω0

(
ε0 + tanh(ksT/2)

ε∞ + tanh(kT/2)

)1/2

. (2.26)

In the limit of large k, each of these converges to the limiting frequency

ωmid = ω0

(
ε0 + 1

ε∞ + 1

)1/2

, (2.27)

such that ω0 < ωc < ωmid, and ωmid < ωs < ωmid. A physical interpretation of

ωmid is that it occurs where ε(ωmid) = −1, where surface charge variations are quick

enough to make the electric potential effectively local, uncoupling the top and bottom

surfaces of the slab.

For modes written in terms of harmonic potentials φh, I adopt the notation that

uh = ∇φh. This notation is somewhat confusing, since the displacements for the

Born-Huang theory u have different units from this uh, which has units of inverse

distance. Going forward, I will only use uh as having units of inverse distance, and

keep in mind that uh is just a mathematical convenience.

To calculate our mode scattering, we need to normalize each mode such that it

has energy ~ωh, where ωh can stand for either ωc or ωs. For a dielectric particle whose

total energy is given by Eq. 2.20, this can be achieved by using potentials that are

24



normalized such that ∫
V

dV ūh · uh′ =

∫
S

dS · φ̄in
h uin

h′ = δh,h′ , (2.28)

where the overbars denote complex conjugates. The scalar potentials are allowed to

extend beyond the slab, with the overall form above and below following Eqs. 2.22

and 2.23, respectively, and the scale above and below the slab being set by continuity.

The electric potential associated with this state can then be written both inside and

outside the particle as

Φh(r) =

(
~

2ωh

)1/2
ω2
h − ω2

0

ω0

φh(r). (2.29)

To make calculations easier, one can make the infinite slab periodic over length L, a

length that is presumed “large,” and which will not factor into the final expressions.

This will allow us to deal with discrete k-states, with each discrete state labeled

by k⊥ = (kx, ky) having a probability dependent on experimental parameters and

k = |k⊥|. Once the potentials of Eq. 2.24 are normalized over one spatial period

via Eq. 2.28 and scaled by continuity with the potenitals above and below the slab

(Eqs. 2.22 and 2.23), the associated electrostatic potentials can be found from Eq. 2.29,

and the transition probabilities can be calculated by Eq. 1.7, where the projection

integral is split into parts for the ranges (−∞,−T/2), (−T/2, T/2), and (T/2,∞),

for the different forms for the potential below, within, and above the slab.

For a slab of thickness T , the transition probability for a single cosh-type k-state

Pc(k, L) =
e2

v2~
8πkL−2

(k2 + ω2
c/v

2)2

(ω2
c − ω2

0)2

ωcω2
0(ε0 − ε∞)

exp(kT )

sinh(kT )
cos2

(
ωcT

2v

)
, (2.30)

is found in terms of ωc(k) as given by Eq. 2.25. To integrate over k-states, we use

polar coordinates and multiply by

“1” =
dkxdky
(2π/L)2

=
2πkdk

(2π/L)2
=
kL2dk

2π
, (2.31)
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which allows us to extract dPc/dk as a quantity without any dependence on L:

dPc
dk

=
e2

v2~
4k2

(k2 + ω2
c/v

2)2

(ω2
c − ω2

0)2

ωcω2
0(ε0 − ε∞)

exp(kT )

sinh(kT )
cos2

(
ωcT

2v

)
. (2.32)

Inverting Eq. 2.25 to find the density of states, the EEL spectrum is derived as

dPc
dω

=
dPc
dk

∣∣∣∣∣ dkdωc
∣∣∣∣∣ (2.33)

such that

dPc
dω

=
e2

v2~
exp(kcT )

sinh(kcT )

16T−1k2
c

(k2
c + ω2/v2)2

(ω2 − ω2
0)2

(ω2ε∞ − ω2
0ε0)2 − (ω2 − ω2

0)2
cos2

(ωT
2v

)
,

(2.34)

which can be plotted using kc(ω) as solved by inverting Eq. 2.25

kc(ω) =
1

T
log

(
ω2(ε∞ − 1)− ω2

0(ε0 − 1)

ω2(ε∞ + 1)− ω2
0(ε0 + 1)

)
. (2.35)

Of course, this expression only applies for the range of ωc, from ω0 to ωmid.

The form for the transition probability of a single sinh k-state is very similar to

the form for a single cosh k-state, using ωs as defined by Eq. 2.26:

Ps(k, L) =
e2

v2~
8πkL−2

(k2 + ω2
s/v

2)2

(ω2
s − ω2

0)2

ωsω2
0(ε0 − ε∞)

exp(kT )

sinh(kT )
sin2

(
ωsT

2v

)
. (2.36)

Using the same steps as for the cosh-type states, we can find the spectrum contribution

dPs
dω

=
e2

v2~
exp(ksT )

sinh(ksT )

16T−1k2
s

(k2
s + ω2/v2)2

(ω2 − ω2
0)2

(ω2 − ω2
0)2 − (ω2ε∞ − ω2

0ε0)2
sin2

(ωT
2v

)
,

(2.37)

where, this time, the contributions are between ωmid and the frequency of the longi-

tudinal modes ω`, and can be plotted using ks(ω) as found by inverting Eq. 2.26
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ks(ω) =
1

T
log

(
ω2(ε∞ − 1)− ω2

0(ε0 − 1)

−ω2(ε∞ + 1) + ω2
0(ε0 + 1)

)
. (2.38)

These contributions are plotted below in Fig. 2.4. This plot does not include the

contribution of the longitudinal modes (Eq. 2.19), which would overwhelm the sinh-

type mode contribution. The surface EEL spectrum spikes around ωmid due to the

large density of k-states surrounding that frequency, and would diverge were it not

for the explicit cutoff K, which applies to both ks and kc, and exempts a small range

of frequencies above and below ωmid from contributing to the spectrum.

2.4 The “Classical” and “Quantum” Equivalence

For the slab, it is not transparently obvious that the “classical” and “quantum”

methods of EELS calculation give the same results. In this section, I present a

particular case for which the equivalence of the two methods can be seen explicitly.

For an electron beam at impact parameter b outside a dielectric sphere of radius

a, the STEM-EEL spectrum has been calculated by by Ferrell et al. (1987) using the

“classical” method. For a sphere surrounded by vacuum, their result becomes

dP

dω
=
∞∑
l=1

l∑
m=−l

4e2

π~
1

(l + |m|)!(l − |m|)!
a2l+1ω2l

v2l+2
K2
|m|

(ωb
v

)
Im

(
l(ε− 1)

εl + (l + 1)

)
. (2.39)

To see how this recovers the quantum result, we need to establish, for one thing,

how this continuum expression recovers discrete states, and, for another, how the

imaginary part of the dielectric leads to a real result. Here I will briefly derive the

result using the “quantum” method, and proceed to show how the same result is the

undamped limit of this “classical” expression.

Only harmonic states can be excited by an aloof beam, and such states are straight-

forward to write down using the spherical harmonics. If we require the same normal-
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ization condition as in Eq. 2.28 and the same electrical potential scaling as in Eq. 2.29,

we find the relevant transition potentials inside and outside the sphere as

Φin
`m(r, θ, φ) =

(
2π~

`a2`+1(ε0 − ε∞)ω`m

)1/2
ω2
`m − ω2

0

ω0

r`Y m
` (θ, φ)

Φout
`m (r, θ, φ) =

(
2π~a2`+1

`(ε0 − ε∞)ω`m

)1/2
ω2
`m − ω2

0

ω0

Y m
` (θ, φ)

r`+1

(2.40)

with the associated harmonic frequencies

ω2
`m =

ε0 + (`+ 1)/`

ε∞ + (`+ 1)/`
ω2

0. (2.41)

Using the projection integral from Ferrell et al. (1987)∫ ∞
−∞

r′−(l+1)Pm
l (cos(θ′))eiωz

′/vdz′ =
2il+mKm( b

v
|ω|)(ω/|ω|)l−m|ω|l

(l −m)!vl
, (2.42)

one can calculate the transition probabilities for Φout
`m using Eq. 1.7 as

P`m =
e2

~
2(2l + 1)

l(l + |m|)!(l − |m|)!
a2l+1

v2l+2

(ω2
`m − ω2

0)2ω2l−1
`m

ω2
0(ε0 − ε∞)

K2
|m|

( b
v
ω`m

)
, (2.43)

leading to the undamped spectrum in terms of Eqs. 2.41 and 2.43

dP

dω
=
∞∑
`=1

∑̀
m=−`

P`mδ(ω − ω`m). (2.44)

How might one obtain a result in this form from Eq. 2.39? The key is to begin

by using the damped form of the dielectric function (Eq. 2.10), and to take the limit

as η → 0. Specifically, upon inserting Eq. 2.10 as the form for ε(ω), one can, after a

snarl of algebra, write the imaginary part of `(ε−1)
ε`+(`+1)

with a suggestive form:

Im
( `(ε− 1)

ε`+ (`+ 1)

)
=
π`(2`+ 1)(ε∞ω2 − ε0ω2

0)

(lε∞ + `+ 1)

× lim
η→0

1

π

η(`+1)ω
(`ε∞+`+1)(

ω2 − ε0+(`+1)/`
ε∞+(`+1)/`

ω2
0

)2

+
(

η(`+1)ω
(`ε∞+`+1)

)2

=
π`(2`+ 1)(ε∞ω2 − ε0ω2

0)

(`ε∞ + `+ 1)
δ(ω2 − ω2

`m)

=
π`(2`+ 1)(ε∞ω2 − ε0ω2

0)

(`ε∞ + `+ 1)

δ(ω − ω`m)

|2ω|

(2.45)
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where the delta-function replacement has been made by identifying the limiting form

of a Cauchy distribution, centered around ω = ω`m

δ(ω − ωh) = lim
∆→0

1

π

∆

(ω − ωh)2 + ∆2
. (2.46)

Putting the above form back into Eq. 2.39, one can recover the same form as the

quantum version, showing that the “classical” and “quantum” versions are equivalent

in the undamped limit. However, the classical version includes losses that are not

included when when a complex dielectric function is merely approximated as real.

This topic will be taken up again in Ch. 3, beyond the electrostatic approximation.

2.5 STEM-EELS of Canonical Dielectric Geometries

In this section, I discuss more generally how five canonical geometries—the five

geometries corresponding to respective coordinate systems for which Laplace’s equa-

tion can be solved most easily via separation of variables (Smythe (1950); Landau

and Lifshitz (1960))—can be treated via the electrostatic approximation in a unified

way. This development shows how both the “classical” and “quantum” versions of

this problem are straightforward once the mathematical machinery is in place.

This machinery is summarized in Tables 2.1-4. In Table 2.1, I summarize the scale

factors for each system as

hi =

√(
∂x

∂ξi

)2

+

(
∂y

∂ξi

)2

+

(
∂z

∂ξi

)2

, (2.47)

which help us to find the gradient

∇ =
3∑
j=1

ξ̂j
hj

∂

∂ξj
, (2.48)

differential volume element

dV = h1h2h3dξ1dξ2dξ3 (2.49)
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geometry coordinates, ξi coordinate ranges scale factors, hi

foil

x = ξ2

y = ξ3

z = ξ1

−∞ <ξ1 <∞

−∞ <ξ2 <∞

−∞ <ξ3 <∞

h1 = 1

h2 = 1

h3 = 1

circular

cylinder

x = ξ3

y = ξ1 cos(ξ2)

z = ξ1 sin(ξ2)

0 ≤ ξ1 <∞

0 ≤ ξ2 < 2π

−∞ <ξ3 <∞

h1 = 1

h2 = ξ1

h3 = 1

sphere

x = ξ1 sin(ξ2) cos(ξ3)

y = ξ1 sin(ξ2) sin(ξ3)

z = ξ1 cos(ξ2)

0 ≤ ξ1 <∞

0 ≤ ξ2 ≤ π

0 ≤ ξ3 < 2π

h1 = 1

h2 = ξ1

h3 = ξ1 sin(ξ2)

oblate

spheroid

x = c((1 + ξ
2
1)(1− ξ22))

1/2
cos(ξ3)

y = c((1 + ξ
2
1)(1− ξ22))

1/2
sin(ξ3)

z = c ξ1ξ2

0 ≤ ξ1 <∞

−1 ≤ ξ2 ≤ 1

0 ≤ ξ3 < 2π

h1 = c((ξ
2
1 + ξ

2
2)/(ξ

2
1 + 1))

1/2

h2 = c((ξ
2
1 + ξ

2
2)/(1− ξ22))

1/2

h3 = c((ξ
2
1 + 1)(1− ξ22))

1/2

prolate

spheroid

x = c ξ1ξ2

y = c((ξ
2
1 − 1)(1− ξ22))

1/2
cos(ξ3)

z = c((ξ
2
1 − 1)(1− ξ22))

1/2
sin(ξ3)

1 ≤ ξ1 <∞

−1 ≤ ξ2 ≤ 1

0 ≤ ξ3 < 2π

h1 = c((ξ
2
1 − ξ

2
2)/(ξ

2
1 − 1))

1/2

h2 = c((ξ
2
1 − ξ

2
2)/(1− ξ22))

1/2

h3 = c((ξ
2
1 − 1)(1− ξ22))

1/2

Table 2.1: Convenient coordinates in which Laplace’s Equation is separable. Contra
tradition, here the cylinder and prolate spheroid lie along x rather than z, since our
electron beam travels along z.

geometry mode labels, h inner potentials, φin
h outer potentials, φout

h

foil

k2 = 2πm/L2

k3 = 2πn/L3

m,n = ±1,±2,±3 . . .

φc = cosh
(
|k|ξ1

)
exp

(
ik · ξ

)
φs = sinh

(
|k|ξ1

)
exp

(
ik · ξ

)
k = (k2, k3), ξ = (ξ2, ξ3)

φ+z = exp
(
− |k|ξ1

)
exp

(
ik · ξ

)
φ−z = exp

(
+ |k|ξ1

)
exp

(
ik · ξ

)
k = (k2, k3), ξ = (ξ2, ξ3)

circular

cylinder

m = 0,±1,±2 . . .

k = 2πn/L

n = ±1,±2,±3 . . .

I|m|
(
|k|ξ1

)
exp

(
i(mξ2 + kξ3)

)
K|m|

(
|k|ξ1

)
exp

(
i(mξ2 + kξ3)

)

Table 2.2: Modes and potentials for the semi-infinite nanoparticle geometries, with
spatial periods in infinite directions fixed by lengths L. Potentials need to be scaled
to ensure continuity at particle boundaries for each mode.

and differential surface element

dS = ξ̂1h2h3dξ2dξ3 (2.50)

for geometries defined by constants ξ1 = ξ0
1 (e.g., a sphere is defined by a constant

radius in spherical coordinates).

In Tables 2.2 and 2.3, I give the harmonic functions for the five geometries. For

the strictly finite geometries, I provide the Coulomb expansion coefficients Ch, as

described below. For the spheroidal harmonics, Hobson (1931) is an authoritative
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geometry Rin
h (ξ1) Rout

h (ξ1) Sh(ξ2, ξ3) Ch

sphere

(
ξ1

ξ01

)` (
ξ01

ξ1

)`+1

P
|m|
`

(
cos(ξ2)

)
exp(imξ3)

1

ξ01

(`− |m|)!
(` + |m|)!

oblate

spheroid
P
|m|
`

(
iξ1
) Q

|m|
`

(
iξ1
)

P
|m|
`

(
iξ01
) P

|m|
`

(
ξ2
)

exp(imξ3) (2` + 1)
i(−1)|m|

c

(
(`− |m|)!
(` + |m|)!

)2

P
|m|
`

(
iξ

0
1

)
prolate

spheroid
P
|m|
`

(
ξ1
) Q

|m|
`

(
ξ1
)

P
|m|
`

(
ξ01
) P

|m|
`

(
ξ2
)

exp(imξ3) (2` + 1)
(−1)|m|

c

(
(`− |m|)!
(` + |m|)!

)2

P
|m|
`

(
ξ
0
1

)

Table 2.3: Potentials for finite nanoparticles with boundary ξ0
1 . For these potentials,

` = 0, 1, 2 . . . and m = −` . . .+ `.

geometry normalization, N −εh

slab
N = L

2
k sinh(2ka)

k = (k
2
2 + k

2
3)

1/2

−εcoshh = coth(ka)

−εsinh
h = tanh(ka)

circular

cylinder

2πL
(
|m|I2|m|(|k|a) + |k|aI|m|(|k|a)I|m|+1(|k|a)

) K|m|+1(|k|a)/K|m|(|k|a)−m/|k|a

I|m|+1(|k|a)/I|m|(|k|a) +m/|k|a

sphere
4πa`(` + |m|)!

(2` + 1)(`− |m|)!
` + 1

`

oblate

spheroid

−4πc(` + |m|)!P̄ |m|
`

(ia/c)

(2` + 1)(`− |m|)!
×

(
i(`− |m| + 1)P

|m|
l+1

(ia/c) + (` + 1)aP
|m|
`

(ia/c)/c
) −Q|m|

`+1
(ia/c)/Q

|m|
`

(ia/c) + ia(` + 1)/c(`− |m| + 1)

P
|m|
`+1

(ia/c)/P
|m|
`

(ia/c)− ia(` + 1)/c(`− |m| + 1)

prolate

spheroid

4πc(` + |m|)!P |m|
`

(1/e)

(2` + 1)(`− |m|)!
×

(
(`− |m| + 1)P

|m|
l+1

(1/e)− (` + 1)P
|m|
`

(1/e)/e
) −Q|m|

`+1
(1/e)/Q

|m|
`

(1/e) + (` + 1)/e(`− |m| + 1)

P
|m|
`+1

(1/e)/P
|m|
`

(1/e)− (` + 1)/e(`− |m| + 1)

Table 2.4: Factors that allow us to find the normalization and frequency for a given
harmonic state. N factors have units of length, and εh, like the dielectric values in
Gaussian units, are dimensionless. Although these factors involve spatial derivatives,
I have put them in terms of the special functions themselves for ease of calculation.

reference, and associated Legendre functions of the second kind Qm
` (x) for x > 1 can

be calculated using the method of Gil and Segura (1998).

The normalization factors N given in Table 2.4 are those needed to achieve

Eq. 2.28. That is, to be used as the classical potentials for uh and Φh, the po-

tential φh must be normalized and continuous across the surface of the particle. If we

calculate a normalization factor N for each of the unnormalized potentials

N =

∫
V

d3x (∇φ̄in) · (∇φin) =

∫
S

dS · φ̄in∇φin (2.51)
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we can write normalized potentials in terms of it

φin
h =

φin√
N

φout
h =

φin

(
ξ0

1

)
φout

(
ξ0

1

) φout√
N

(2.52)

where the expression for φout
h is scaled to ensure continuity of the potential, and, as

defined above, u
in/out
h = ∇φin/out

h , and overbars connote complex conjugates.

The harmonic frequencies can be understood easily in terms of these potentials.

From the electrostatic boundary conditions we can obtain an expression for εh in

terms of derivatives of the potentials at the surface

εh =
uout
h · n̂

uin
h · n̂

∣∣∣∣
surface

(2.53)

where n̂ is the unit normal vector at the surface. This expression clarifies the geo-

metric role of εh in the theory. For simple geometries, the coordinate system defines

appropriate particle boundaries and separable harmonic functions of index h. The

coordinate boundary establishes the particle shape and determines how φin
h and φout

h

must be scaled to achieve continuity, and the function index h determines the poten-

tial derivative discontinuity at the particle surface, and the particular value it takes

on sets the harmonic frequency via the dielectric function by ε(ωh) = εh.

Note that since ε(ω) is negative for harmonic frequencies, the values for −εh are

positive. In the undamped Born-Huang theory, the frequencies of the harmonic modes

can be written as

ω2
h =

ε0 − εh
ε∞ − εh

ω2
0. (2.54)
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Figure 2.3: Comparison of harmonic frequencies across five canonical geometries.
The dashed horizontal line is at the value of ωh for which εh = −1. Spheroid plots
are for nanoparticles with cross-sectional eccentricites of 0.99.

This allows us to identify the transverse and longitudinal limits:

−εh →∞, ωh → ω0;

−εh → 0, ωh → ω`.

(2.55)

These frequencies are plotted for each of the geometries under consideration in Fig. 2.3,

which shows how the frequencies spread out as the cross-sectional aspect ratio of the

particle increases. But the way these frequencies manifest in spectra is quite distinct

in the “classical” and “quantum” methods, as I will now review.

In the “classical” approach, the key realization is that the Coulomb potential

of the beam potential can be expanded in terms of the harmonic potentials. (The
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arguments given below are similar to those of Smythe (1950).) Suppose we have two

points rin and rout whose radial ξ1 components differ in that the former is smaller

than the latter—i.e., (ξ1)in < (ξ1)out. We would like to write

−e
|rout − rin|

=
∑
h

−eChφ̄in
h (rin)φout

h (rout),

=
∑
h

−eChφin
h (rin)φ̄out

h (rout).

(2.56)

where the Ch coefficients are constants, the Coulomb coefficients given in Table 2.4,

and the overbar notation denotes, as before, the complex conjugate.

The values Ch are easiest to find if we distinguish between the “radial” parts of

the solutions to Laplace’s equation R
in/out
h (ξ1), which are different inside and outside

the particle, and the “surface” parts of the solutions Sh(ξ2, ξ3), which are the same.

We can write these functions symmetrically, where ξ0
1 marks the particle boundary:

φin
h = Rin

h (ξ1)Rout
h (ξ0

1)Sh(ξ2, ξ3),

φout
h = Rin

h (ξ0
1)Rout

h (ξ1)Sh(ξ2, ξ3).

(2.57)

The “radial” parts Rin
h (ξ1) and Rout

h (ξ1) are taken to be real-valued, while the oscilla-

tory “surface” parts Sh(ξ2, ξ3) are allowed to be complex. To expand a point charge

in these functions, we first write it as a surface charge on the surface ξ1 = ξ0
1 :

σ(ξ2, ξ3) = −eδ(ξ2 − ξ0
2)

h2

δ(ξ3 − ξ0
3)

h3

∣∣∣∣
ξ1=ξ0

1

. (2.58)

This allows us to find the potential due to the charge in terms of Gauss’s Law, which

allows the coefficients Ch to be calculated as

Ch = 4π

(
W (Rout

h , Rin
h )

∫
S

dS
S̄hSh
h1

)−1

, (2.59)

where W is the Wronskian, the integral is over the nanoparticle’s surface ξ0
1 , and h1

is the scale factor of the radial coordinate.
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Given this expansion, solving for the spectrum of an aloof beam becomes quite

straightforward. The potential of the beam electron takes on the form

Φe(r, t) =
∑
h

−eChφin
h (r)φ̄out

h (re(t)) , (2.60)

where re(t) marks the straight-line path of the electron at speed v with along the

path z = vt with transverse position x0 outside the particle in the sample plane. If

we transform the electron potential as a function of frequency, it becomes

Φe(r, ω) =
∑
h

−eChIh(x0, ω)φin
h (r), (2.61)

where Ih(x, ω) is the projection integral

Ih(x, ω) =

∫ ∞
−∞

dz

v
φ̄h(x, z) exp(iωz/v). (2.62)

Next we apply the electrostatic boundary conditions. The first requires the poten-

tial to be continuous across the particle surface, and the second requires D(r, ω) · n̂ =

ε(ω)E(r, ω) · n̂ to be continuous across the particle surface. These conditions give us

the Fourier coefficients for the dielectric particle, and we can now find the spectrum

a la Eq. 1.4, leading to a transparent expression

dP

dω
=

e2

π~
∑
h

Ch |Ih(x0, ω)|2 Im (αh(ω)) (2.63)

where, following Ferrell et al. (1987), we introduce the “nanoparticle polarizability”

αh(ω) =
ε(ω)− 1

ε(ω)− εh
, (2.64)

in which εh is the same as it was in Eqn. 2.53. Notice that the harmonic frequencies

appear in this expression via εh, and the height of each peak in the spectrum depends

on the beam position via the projection integral Ih(x0, ω).
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In the “quantum” version of this problem, we are interested in the transition

|0〉 → |1h〉, in which one quantum of mode h is created as a result of the electrostatic

interaction with a beam electron in the STEM, the interaction energy has the form

−e
(

~
2ωh

) 1
2 4πZ∗0
ε∞ − εh

φ̄h(r). (2.65)

In the projection approximation for inelastic scattering, the interaction energy is

multiplied by the phase factor exp(iωhz/v), integrated along the entire optic axis

z, and multiplied by the interaction constant 1/~v. The squared modulus of the

resulting expression then gives the scattering probability Ph(x) for exciting the hth

mode when the electron beam is positioned at the transverse coordinate x0:

Ph(x0, ωh) =
e2

2~ωh

(
4πZ∗0
ε∞ − εh

)2

|Ih(x0, ω)|2 (2.66)

where Ih(x, ω) is the projection integral of Eq. 2.62.

In the undamped limit, the spectrum for the harmonic states in this approach

would appear as sum of delta functions, each with weight Ph and centered on ωh. The

simplest way to extend our formalism in the case of a nonzero damping parameter η

is to replace ωh in the projection integral by the damped value ω′h = (ω2
h − η2)1/2. A

spectrum is then built up by summing Lorentzians for each transition:

dP

dω
=
∑
h

η

2π

Ph(x0, ωh)

(ω − ω′h)2 + (η/2)2
. (2.67)

This is the approach I have used to make plots in Section 2.6. If we restrict our

attention to regions where the dielectric damping is negligible, this simply reproduces

the results of the classical treatment, albeit with a different order of operations.

For constructing these plots, the projection integrals (Eqn. 2.62) present the great-

est difficulty. Analytic solutions for these integrals are known for the sphere in Ferrell
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et al. (1987) and for the spheroids in Illman et al. (1988) when the projection is along

the nanoparticle axis of rotational symmetry, but for prolate spheroids oriented in

the transverse plane, a different approach was needed. We found that the external

prolate spheroidal harmonics can be expressed via a convolution with the spherical

solid harmonics, and that by rotating these spherical solid harmonics (Gumerov and

Duraiswami (2015)), one can reconstruct the projected prolate spheroidal potentials.

Although I have not treated them here, the classical and quantum treatments

of bulk modes also compliment each other. For instance, many sources report on

“Begrenzung” (boundary) effects for bulk modes in finite geometries. Roughly, this

effect consists of the observation that if an electron travels through a finite dielectric,

the energy loss probability at ω` is reduced relative to what one would expect for the

same distance traveled in an infinite medium. In classical treatments, this manifests

as a negative contribution of the harmonic modes to the loss spectrum at ω`. In

quantum treatments (Lucas et al. (1970); Lucas and Šunjić (1972); Schmeits (1981)),

this effect arises naturally as the orthogonality of modes shifts the density of states

from bulk to surface modes.

2.6 Numerical Results for Canonical Geometries

Finally, I review here the EELS spectra obtained from bare nanoparticles with five

canonical geometries (semi-infinite slab, semi-infinite circular cylinder, sphere, oblate

spheroid, and prolate spheroid). This is useful for gaining an appreciation of how the

frequencies plotted in Fig. 2.3 appear in the EEL spectra.

The nanoparticle spectra in this section were computed by applying Eqns. 2.66

and 2.67. We use experimentally measured parameters for cubic boron nitride (Eremets

et al. (1995)), an isotropic material, but with an unrealistically small damping pa-

rameter (η = 0.0005ω0) to isolate the modes. For all plots going forward, we assume
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a 60 keV electron beam and a 1 mrad collection semi-angle. Longitudinal mode

contributions have not been included here, but for beam positions that pierce the

nanoparticles, the longitudinal mode contribution would contribute a peak at ω` with

an intensity proportional to the particle thickness.

Although the scattering probabilities here are small, and the predicted range of

frequencies seems so narrow as to defy positive detection, the modes considered here

also apply to the surface plasmon modes for metals, except with stretched frequency

limits as given by Eq. 2.11. In the metallic context, the spectra arising from prolate

spheroids, and the changes in these spectra as a function of cross-sectional eccentricity,

will be especially relevant to the enhancement results presented in Ch. 4.

2.6.1 Foil, Cylinder, Sphere

Fig. 2.4 shows spectra for the three “limiting” geometries, namely, the slab, the

cylinder, and the sphere (see Fig. 2.3). In each plot, three frequencies are marked:

ω0 as the lower bound for the harmonic frequencies, ω` as the upper bound, and

a frequency between the two that picks out the intermediate value associated with

εh = −1 (which is the frequency associated with modes of high spatial frequency as

h→∞; see Fig. 2.3).

As noted above, for the slab (Lucas and Kartheuser (1970)) the internal harmonic

potentials take on symmetric and antisymmetric forms

φin
k⊥
∝ exp(ik⊥ · x)


cosh(|k⊥|z)

sinh(|k⊥|z)

(2.68)

where k⊥ = (kx, ky) are continuous quantum numbers; above and below the slab these

potentials die off exponentially. As a general rule the cosh modes scatter strongly,

whereas the sinh modes do not. This behavior is easily understood from the projection

integral along the beam direction in Eqn 2.62: the antisymmetry of the sinh potentials
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Figure 2.4: Surface spectra for the three “limiting” geometries. Top Left : thin (5
nm) and thick (50 nm) semi-infinite foil. Top Right : semi-infinite cylinder of diameter
2a = 50 nm with (A) piercing beam at b = 0, and (B) aloof beam at b = 1.01a.
Bottom: sphere of diameter 2a = 50 nm with (C) piercing beam at b = 0, and (D)
aloof beam at b = 1.01a. Spectra are plotted in units of meV−1. Representative mode
potentials are shown for each, with relevant electron beam trajectories indicated.
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implies that their projection almost vanishes for slab thicknesses� v/ω, which is the

case here. For the thicker slab in Fig. 2.4, the peak around ω(εh = −1) is due to a

large density of states, although the states are individually very weakly scattering.

For the semi-infinite cylinder with its axis perpendicular to the electron beam

(Zabala et al. (2001)), modes above ω(εh = −1) are not present. The harmonic

potentials inside and outside the cylinder

φin
km ∝ exp(ikx+ imϕ)I|m|(|k|ρ)

φout
km ∝ exp(ikx+ imϕ)K|m|(|k|ρ)

(2.69)

are labeled by a discrete m and a continuous k, where Im and Km are modified Bessel

functions of the first and second kind. The cylinder spectra depend on beam position.

While the broad band extending down to ω0 representing excitations of the m = 0

states can be seen in spectra both when the beam pierces the center of the cylinder

and when the beam is aloof, the odd m bands are missing from the piercing beam

spectrum, by symmetry.

For the sphere of radius a (Ferrell et al. (1987)), the potentials

φin
`m ∝ (r/a)`Pm

` (cosϑ) exp(imϕ)

φout
`m ∝ (a/r)`+1Pm

` (cosϑ) exp(imϕ)

(2.70)

follow the familiar spherical harmonics. For the sphere, as for the cylinder, a beam

through the center of the particle has difficulty exciting modes with an odd spatial

parity, but as shown in Fig. 2.3 the range of harmonic frequencies available to the

sphere is so reduced (and the degeneracy of states is so great) that the influence of

beam position is less apparent for the sphere than for other geometries.

2.6.2 Oblate and Prolate Spheroids

To investigate beam-position effects in a slab-like geometry, we can use the oblate

spheroid (Illman et al. (1988)). The oblate spheroid is flat and wide, an ellipse rotated
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about its minor axis. In oblate spheroidal coordinates

x = c cosh(%) cos(ϑ) cos(ϕ)

y = c cosh(%) cos(ϑ) sin(ϕ)

z = c sinh(%) sin(ϑ)

0 ≤% <∞

−π/2 ≤ϑ ≤ π/2

0 ≤ϕ ≤ 2π

(2.71)

a surface of constant % describes an oblate spheroid. Appropriate choices of c and %

describe a variety of particle surfaces—thick or thin, flat or spherical.

The oblate spheroidal harmonics

φin
`m ∝ Pm

` (i sinh %)Pm
` (sinϑ) exp(imϕ)

φout
`m ∝ Qm

` (i sinh %)Pm
` (sinϑ) exp(imϕ)

(2.72)

are labeled by two discrete quantum numbers, ` and m, and are written in terms

of associated Legendre polynomials of the first and second kind. At large % or with

small c, these solutions approach the spherical harmonics. In Fig. 2.5, the maximal

spheroid thickness remains constant at 2a = 50 nm, but the eccentricity e changes,

where e→ 0 for a sphere and e→ 1 for a slab. We can put the spheroid semi-major

axis R, the projected disc radius, in terms of e and a:

R2 = a2/(1− e2). (2.73)

The symmetries of the oblate spheroid are such that only b, the beam’s transverse

distance from the origin, is relevant to spectral differences. Comparing the spectra

for b = 0 and b = 1.01R for in Fig. 2.5, we find that the aloof beam excites a wider

range of energies than the piercing beam, and that there are roughly twice as many

peaks in the aloof beam spectra as the piercing beam spectra. Specifically, the states

with ` = 2, 4, 6, ... and m = 0 are most excited by the piercing beam, and the states

with ` = 1, 2, 3, ... and m = ±` are most excited by the aloof beam.

Beam-position effects are even more pronounced with the prolate spheroid, a

geometry that transitions smoothly between the sphere (e → 0) and the cylinder
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Figure 2.5: Oblate spheroids of maximal thickness 2a =50 nm over a wide range
of eccentricity. Beam positions are (A) through the center b = 0, or (B) just past
the edge R of the nanoparticle at b = 1.01R. Representative harmonic potentials in
plan view and cross-section view are shown atop, with the electron beam trajectory
indicated.
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Figure 2.6: Prolate spheroids of maximal thickness 2a =50 nm over a wide range
of eccentricity. For prolate spheroids of length 2R, beam positions are either (C)
piercing their centers, both in length and width, or (D) aloof just past the lengthwise
tip, at (x0, y0) = (1.01R, 0). Spectra are plotted in units of meV−1. As in Fig. 2.5,
representative harmonic potentials and electron beam trajectories are indicated.

(e→ 1). As with oblate spheroidal coordinates, in prolate spheroidal coordinates

x = c cosh(%) cos(ϑ)

y = c sinh(%) sin(ϑ) cos(ϕ)

z = c sinh(%) sin(ϑ) sin(ϕ)

0 ≤% <∞

0 ≤ϑ ≤ π

0 ≤ϕ ≤ 2π

(2.74)

a surface of constant % defines a spheroid. As with the cylinder, we have shifted the

long axis from z to x to make the long axis normal to the beam path.
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Like the oblate spheroidal harmonics, prolate spheroidal harmonics

φin
`m ∝ Pm

` (cosh %)Pm
` (cosϑ) exp(imϕ)

φout
`m ∝ Qm

` (cosh %)Pm
` (cosϑ) exp(imϕ)

(2.75)

are labeled by ` and m, are written via associated Legendre polynomials, and reduce

to the spherical harmonics. Again, we consider particles of maximal of maximal

thickness 2a = 50 nm. For this case, R in Eqn. 2.73 gives half the length of the (long)

major axis.

As with the oblate case, for Fig. 2.6 we position one beam at the center of the

spheroid, and one just outside the particle, past the tip at (x, y) = (1.01R, 0). Again,

we see that the aloof beam excites roughly twice as many frequencies as the piercing

beam, but for the prolate spheroid we observe the same excited frequencies for our

two chosen beam positions, only with half of the peaks missing from the spectra of

the central piercing beam. Specifically, while the aloof beam strongly excites the

states with ` = 1, 2, 3, ... and m = 0, the piercing beam only excites the states with

` = 2, 4, 6, ... and m = 0. This aligns to the general trend that those states whose

projected charges have odd spatial parity are suppressed in the spectra of a centrally

located beam.

2.7 Summary

In this chapter, I reviewed the theory of low-loss STEM-EELS in the electrostatic

dielectric approximation (i.e., where c → ∞). I presented the theory of STEM-

EELS for the dielectric slab in both the “classical” approach, in which the beam

potential and its consequences are foregrounded, and in the “quantum” approach,

for which the normal modes of the dielectric itself are foregrounded. In the case of

an undamped dielectric, the two approaches are equivalent, as I showed explicitly

for an aloof beam passing a dielectric sphere. This equivalence of the “classical”
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and “quantum” approaches, while expected, enables an expansion of interpretation,

linking EELS with nanophotonics, plasmonics, quantum wells in semiconductors, etc.

A unified approach for canonical geometries was presented and applied for the

surface states of the “limiting geometries” of the semi-infinite cylinder, the semi-

infinite circular, the sphere, and of the “transitional geometries” of the oblate and

prolate spheroids. This development leads to further applications of plasmonics in

Ch. 4. In the next chapter, I will discuss how the theory of low-loss STEM-EELS

changes when we press beyond the electrostatic approximation.
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Chapter 3

STEM-EELS OF ELECTRODYNAMIC MODES

3.1 Introduction

In the last chapter, I showed how the STEM-EELS of several canonical dielectric

geometries can be dealt with in the electrostatic limit of the Born-Huang theory. In

this chapter, I incorporate effects that are not included in the simplified model. One

complication is that the dielectric response of real materials may not be captured by

the simple Born-Huang model, as I will discuss in the next section. But the more

obvious complications arise from the breakdown of the electrostatic approach.

The importance of relativistic corrections to the core-loss theory have been demon-

strated, for instance, by Schattschneider et al. (2005) and Dwyer and Barnard (2006);

further discussions have been given by Sorini (2008) in his doctoral thesis. These re-

sults tend to introduce significant quantitative corrections to effects that could be

found less precisely in the electrostaic approach. On the other hand, in the low-loss

theory, Cherenkov-type effects can also change the qualitative nature of the outcomes

of calculations, whether one adopts a “classical” or “quantum” style of calculation.

For the “classical” style of calculation, the reason can be seen in the electric field

of the beam electron. For a classical electron traveling along z = vt and centered at

the origin of R = (x, y) in a material described by the dielectric function ε(ω), the

electric field at b = |R| can be written, following Garćıa de Abajo (2010), as

Ee(r, ω) =
2eω exp(iωz/v)

v2ε(ω)γε(ω)

[
i

γε(ω)
K0

(
ωb

vγε(ω)

)
ẑ−K1

(
ωb

vγε(ω)

)
R̂

]
(3.1)
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where

γε(ω) =
1√

1− ε(ω)v2/c2
. (3.2)

If we approximate ε(ω) as real, this expression can tell us a great deal about the

qualitative effects we should expect at different frequencies. For positive arguments x,

the modified Bessel functions Kν(x) decay for as x→∞, with high orders ν decaying

more quickly than low orders. When ε(ω) ≤ 0, it is obvious on inspection that γε(ω)

will be positive, and that we should expect the electric field to decay as R becomes

large. But for imaginary arguments, the functions Kν(x) become proportional to the

oscilliatory Hankel functions, leading to radiation. Simply from the form of γε(ω),

one can see that this will happen when v2 > c2/ε(ω), or, colloquially, when the speed

of the electron is greater than the speed of light in the material.

The fact that charged particles lose energy to radiation when they move with

v > c/
√
ε is well-known to physicists as Cherenkov radiation, famous as the source

of the bluish light surrounding radioactive substances that undergo β-decay in a

transparent medium. A standard physical interpretation of this effect (Jelley (1955))

is that when v2 < c2/ε(ω), polarization dipoles in front of the electron and behind it

can stretch one way and another along with the electron’s Coulomb field as it passes,

enforcing an approximate mirror symmetry. But when v2 > c2/ε(ω), the material

cannot respond quickly enough to maintain this symmetry, leading to an electric

shock wave, a process analogous to the “sonic boom” that results when an object

moves through air faster than the speed of sound.

This effect can also be described in terms of a “quantum” normal modal analysis.

In the electrostatic analysis of the undamped dielectric slab, following Fuchs and

Kliewer (1965), there exist just three types of modes: transverse modes at the lower

limiting frequency ω0, with ε(ω0) = −∞; longitudinal modes at the upper limiting

frequency ω`, with ε(ω`) = 0; and harmonic surface modes at frequencies ωh lying
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between the two, with ω0 < ωh < ω`, such that −∞ < ε(ωh) < 0. Upon introducing

retardation into the calculation of the normal modes, Kliewer and Fuchs (1966a)

found that longitudinal modes maintain their same frequency ω`, and surface modes

remain with in the range bounded by ω0 and ω`, albiet at shifted frequencies. But the

transverse modes require some conceptual refinement, shifting from modes for which

Et = 0, to ones for which E is oscillatory and nonzero inside the slab and evanescent

outside. (Longitudinal modes are also oscilliatory, but E` = 0 beyond the slab.)

In simple physics terms, these waveguide modes result from light bouncing back

and forth between the surfaces of the slab via total internal reflection. As in the

“classical” treatment, such modes can only be excited by an electron beam of sufficient

speed to match the mode momentum. Such arguments from momentum conservation

explain both why such modes can be excited when v2 > c2/ε(ω), and why radiation

cannot happen spontaneously in vacuum (once again, see Garćıa de Abajo (2010)).

This chapter is dedicated to the treatment of electrodynamic effects in silicon.

After a discussion of local dielectric models, I present results for an electron running

parallel to the interface of a silicon ribbon (i.e., a slab turned on its side) using the

“classical” beam-first approach. Then I present results an electron running alongside

the interface of a silicon cylinder using the “quantum” modes-first approach. Finally,

I compare the cylinder model to experimental data on silicon nanodiscs taken by

Flauraud and Alexander (2019). Combined results from the unbounded cylinder and

a “thin disc” approximation yield lower and upper bounds on energies for the observed

modes in real discs, and qualitatively describe the behavior of the low-order modes.

3.2 Dielectric Models of Silicon

The Born-Huang model for dielectric response, as discussed above, gives us a

simple, local description of ionic or metallic materials. However, for a semiconductor
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like silicon, this type of model is not the most efficient or accurate way to capture the

important behaviors. In this section, I outline a few of the formal requirements that

a local, causal dielectric model must obey, and discuss why these formal constraints

are often ignored in practice for STEM-EELS simulations.

Some formal aspects of ε(ω) have been tacitly used above without explicit acknowl-

edgement. For instance, Eq. 2.2 writes the macroscopic displacement field D(r, t) as

convolution of the the local electric field E(r, t) with the dielectric response ε(t). A

real electric field should lead to a real displacement field, which implies that ε(t) is

also real. But this means that

ε(ω) = ε∗(−ω) (3.3)

by the Friedel symmetry of Fourier transforms of real-valued functions, meaning that

Re[ε(ω)] is symmetric in ω and that Im[ε(ω)] is antisymmetric in ω.

The other widely cited formal requirement for ε(t) involves its causal structure,

and leads to the Kramers-Kronig (KK) relations. (See Bohren (2010) for a brief

history of the KK-relations, and Dethe et al. (2019) for a brief overview of their

applications.) Since the past can influence the future but—presumably—the future

cannot influence the past, the form of the dielectric function in terms of the electric

susceptibility χe

ε(t) = 1 + 4πχe(t) (3.4)

should not change if we slip in a Heaviside function:

ε(t) = 1 + 4πχe(t)Θ(t). (3.5)

One way to obtain the KK relations, championed as a “two-line proof” by Hu (1989)

and as a derviation from systems theory by Schönleber et al. (2014), is simply to

take the Fourier transforms of Eq. 3.4 and Eq. 3.5 and to set them equal. Splitting

the dielectric response into its real and imaginary parts as ε(ω) = ε1(ω) + iε2(ω) and
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using Eq. 3.3 leads to the KK relations:

ε1(ω) = 1 +
2

π

∫ ∞
0

ω′ε2(ω′)

ω′2 − ω2
dω′,

ε2(ω) = −2ω

π

∫ ∞
0

ε1(ω′)

ω′2 − ω2
dω′.

(3.6)

These relations famously tell us that if we know ε1(ω), we can find ε2(ω), and

vice versa. They also lead to one fruitful route toward modelling dielectrics. Adachi

(1988), for instance, constructs an ingenious analytic model for crystalline silicon that

takes all its parameters from the band structure. After some judicious approximations

(parabolic bands, etc.), the model explicitly constructs ε2(ω) from the interband

dipole matrix elements and the joint density of states, incorporating both direct

and indirect transitions. The results of this model are shown in the upper left panel

of Fig. 3.1. Adachi compared his results to the ellipsometry data of Aspnes and

Studna (1983), whose results are similar to those of Jellison (1992), shown in the

bottom left panel, and supplemented by the data from Aspenes and Studna at higher

energies. Given the “sharp” features of the analytic approximation to ε2(ω), it is not

surprising that the KK-constructed ε1(ω) in Adachi’s model has unphysical singular

points, labeled with dashed vertical lines at 3.38 eV and 4.27 eV.

A similar approach, where ε2(ω) is constructed and ε1(ω) is recovered by a KK

analysis, is sometimes also undertaken in the context of density functional theory, at

various levels of sophistication, as discussed by Zheng et al. (2017). A less physically

grounded approach, which is nevertheless empirically adequate by construction, is to

introduce various KK-consistent models and to see which one best fits the data. Leng

et al. (1998) uses this method to fit dielectric response data for both crystalline silicon

(c-Si) and amorphous silicon (a-Si), finding that different models were best suited to

each material, and conceeding that any physical interpretations one might attach to

such fits should be viewed with some suspicion.
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Figure 3.1: Models for ε(ω) of silicon, with Re[ε(ω)] plotted in red, and Im[ε(ω)]
plotted in blue. Counter-clockwise from bottom right: amorphous silicon (a-Si) from
ellipsometery data; crystalline silicon (c-Si) data from Jellison (1992) for ~ω < 5.2 eV
and Aspnes and Studna (1983) for ~ω > 5.2 eV; analytic model for c-Si from Adachi
(1988); ad hoc model for c-Si from Deinega and John (2012)

.

Such difficulties in interpretation makes abandoning internal consistency an at-

tractive possibility, as in Deinega and John (2012), who use an a use an ad hoc

six-parameter fit to c-Si data, shown in the upper right of Fig. 3.1. This approach

has its own limitations (their ε2(ω) becomes negative below 1.13 eV, below the range

of their fitting data), but such issues are present even for a very direct model, as in

the spline fit to the c-Si data shown as solid lines through the c-Si data points in

Fig. 3.1.1 And while KK-consistent models for amorphous semiconductors exist (e.g.,

the five-parameter model of Forouhi and Bloomer (1986)), when experimental data

1A spline should not extend beyond the range of avaliable data, but when low-frequency data

is not available, one can interpolate over the range (−ωmax, ωmax) using ε(−ω) = ε∗(ω) and the

measured real-valued dielectric constant for ε(0).
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Figure 3.2: The geometry of interest: a material with a local frequency-dependent
dielectric function ε(ω) is flanked on both sides by vacuum (ε0(ω) = 1). Meanwhile,
the electron beam is positioned at x = x0, where 0 < x0 < d.

is available, the temptation of simply using a smoothed spline is too great to resist.

This is the route I have taken in the following sections, of using interpolated results

for ε(ω) from measured n(ω) and k(ω) values from optical ellipsometry data (ε = (n+

ik)2). It should be noted that such values could, in principle, be obtained directly from

EELS data, using methods outlined in Potapov et al. (2009). But the relative ease of

interpreting optical measurements may make such EELS measurements unattractive

unless the spatial variation in ε(ω) is itself being explored.

3.3 Modeling Silicon Ribbons

In this section, I present theoretical treatments of STEM-EELS losses for a clas-

sical electron beam penetrating a dielectric material with dielectric response ε(ω),

surrounded on either side by vacuum (ε0 = 1), as pictured in Fig. 3.2. In Sec. 3.3.1

I present the theory of such structures in the electrostatic approximation, and in

Sec. 3.3.2 I review how this calculation is extended with an electrodynamic approach.

In Sec. 3.3.3, I compare the results of the electrostatic and electrodynamic approaches,

and show how the models evolve as ribbon width and beam energy increase. The con-

tributions of the transverse electric (TE) and transverse magnetic (TM) modes are

also isolated, along with the specific contributions of various TE/TM modes.
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3.3.1 Electrostatic Approach

Concise expressions for the STEM-EELS spectra of a beam running parallel to

a dielectric surface were first given by Echenique and Pendry (1975). Here I extend

that calcuation for a beam running through a dielectric ribbon, with a derivation that

runs parallel to theirs, but which adds an additional interface.

As is typical for electrostatic calculations, we begin with Laplace’s equation for

the beam electron, a classical point charge −e in vacuum, traveling along z = vt for

which x0 sets the beam position relative to the foil’s surfaces:

∇2Φe(r, t) = −4πeδ(z − vt)δ(y)δ(x− x0). (3.7)

To match boundary conditions at the surfaces of the foil, it will be useful to write this

as an expression that is partly in real and partly in reciprocal space—viz., Φe(k‖, x, ω),

where k‖ = (kz, ky). Performing the spatial Fourier transforms yields

Φe(k‖, x, t) =
2πe

|k‖|
exp(−|k‖||x− x0|) exp(−ikzvt), (3.8)

and the t to ω transformation constrains the kz momentum transfer

Φe(k‖, x, ω) =
4π2e

|k‖|
δ(ω − kzv) exp(−|k‖||x− x0|), (3.9)

which captures the x-dependence we will need for applying boundary conditions.

Now we consider how to apply this analysis to the three relevant areas of our foil:

(1) x ≤ 0, (2) 0 < x < d, and (3) x ≥ d. The total potential in each region Φ1,2,3,

will include a part φ1,2,3 that is due to the background dielectric response:

Φ1(k‖, z, ω) = φ1(k‖, z, ω), (3.10a)

Φ2(k‖, z, ω) = φ2(k‖, z, ω) + Φe(k‖, z, ω)/ε(ω), (3.10b)

φ3(k‖, z, ω) = φ3(k‖, z, ω). (3.10c)
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These response potentials φ1,2,3 will not incorporate any free charge within their

respective regions, so we can expect them to follow Laplace’s equation

(ik‖)
2φ+

∂2φ

∂x2
= 0, (3.11)

which, given that φ(x)→ 0 for x→ ±∞, allows us to write

φ1(k‖, x, ω) = C1φ(k‖, ω) exp(|k‖|x), (3.12a)

φ2(k‖, x, ω) = C2aφ(k‖, ω) exp(|k‖|x) + C2bφ(k‖, ω) exp(−|k‖|x), (3.12b)

φ3(k‖, x, ω) = C3φ(k‖, ω) exp(−|k‖|x), (3.12c)

where φ(k‖, ω) = −4π2eδ(ω − kzv)/|k‖| for each term.

From these expressions, we can immediately find the relevant boundary conditions,

first for the continuity of the potential at x = 0 and x = d and next for the continuity

of the x-component of the displacement field. From these, it is straightforward to

solve for the coefficients C2a and C2b that predict the surface contribution to the

potential induced by the beam when it is propagating inside a foil, and, summing the

expressions, we find a neat form for the surface contributions:

C2ae
|k‖|x0 + C2be

−|k‖|x0 =
(ε2 − ε20) (exp(2kx0) + exp(2k(d− x0))) + 2 (ε− ε0)2

ε
[
(ε+ ε0)2e2|k‖|d − (ε− ε0)2

] .

(3.13)

Putting these together to find the response potential Φ0, we can solve for the work

W done on the particle, and extract our desired quantity from the integrand as

−dW
dz

= qe
∂Φ0

∂z

∣∣∣∣
beam

=

∫ ∞
0

dω (~ω)
d2P

dz dω
, (3.14)

leading us to an expression that can be calculated, for a cutoff kcuty to match the

aperture size and/or to reflect the atomic scale of the material:
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d2P

dz dω
=

e2

π~v2
Im

[∫ kcuty

0

dky (χbulk + χsurface)
∣∣∣
kz=ω/v

]
;

χbulk = − 1

|k‖|

(
ε− 1

ε

)
,

χsurf = −(ε2 − ε20) (exp(2kx0) + exp(2k(d− x0))) + 2 (ε− ε0)2

|k‖|ε
[
(ε+ ε0)2e2|k‖|d − (ε− ε0)2

] .

(3.15)

A few relevant formal features of this expression may be noted. The bulk loss

term vanishes when ε = 1, as there is no bulk loss in vacuum, and the surface loss

term vanishes when ε = ε0, as this reduces to the bulk loss case. Also, the surface

losses depend on x0 and (d−x0), the distances from the left and right surfaces of the

ribbon to the beam. And these surface losses will be largest where the denominator

of χsurf is small, as revealed by factoring:

0 ≈ e|k‖|d(ε+ ε0)− (ε− ε0),

0 ≈ e|k‖|d(ε+ ε0) + (ε− ε0)

(3.16)

The other case with a small denominator, for ε ≈ 0, leads to a negative surface

contribution, the so-called “Begrengzung” effect, from a shifting of the density of

states away from the longitudinal bulk modes.

3.3.2 Electrodynamic Approach

The transition from the electrostatic to the electrodynamic (yet still classical)

treatment of STEM-EELS is a fairly seamless one, for the very limited cases where

analytical solutions are known. Garcia-Molina et al. (1985) presented a relativistic

version for a beam running parallel to a dielectric surface. Later, Bolton and Chen

(1995) extended the relativistic theory to the case of an arbitrary number of parallel

layers. Wang (1996) provided a well-written and detailed review of these methods.
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The innovation of Garcia-Molina et al.—which was carried forward by Bolton and

Chen—was in solving for the dielectric response fields in terms of the Hertz electric

vector potential. I will not present this solution in detail, but will describe its outline

and quote the relevant result. The Hertz electric vector potential Π (see Stratton

(1941); Essex (1977)) is related to the conventional vector and scalar potentials as

φ = −∇ ·Π

A = µε
∂Π

∂t
,

(3.17)

which fixes its relationship to the electric and magnetic fields

E = −∇φ− ∂A

∂t
= ∇ (∇ ·Π)− ∂2Π

∂t2

B = ∇×A = µε
∂

∂t
(∇×Π) .

(3.18)

If we substitute these into Maxwell’s equations and Fourier transform from t to ω,

we find a neat relationship for Π that shows its utility in simplifying problems where

there is a known current density J(r, ω):(
∇2 +

εω2

c2

)
Π(r, ω) =

4π

iωε
J(r, ω). (3.19)

This allows solutions to the Helmholtz equation to be used in expressing the un-

known electromagnetic response to the known beam current, in a way that is exactly

analogous to the way that solutions to the Laplace equation were used in response to

the beam potential in the electrostatic solution presented above. Just as above, the

spatial Fourier transform is taken in the directions parallel to the interface—i.e., from

(y, z) to k‖ = (ky, kz)—and one then sets boundary conditions to find Π = (Πx, 0,Πz),

where Πy is taken to vanish by symmetry. In the end, the electric field is recovered,

and the work done on the beam by the response field leads to the EEL spectrum as

the integrand of the work in the usual way.

Of course, the mathematical solution to this is somewhat more involved than the

electrostatic version, even if we maintain H = B for non-magnetic materials. At each
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boundary interface xb, the continuity of Hx and Hz leads to the following boundary

conditions for Πz and Πx

εleftΠ
left
z (xb,k‖) = εrightΠ

right
z (xb,k‖)

εleftΠ
left
x (xb,k‖) = εrightΠ

right
x (xb,k‖),

(3.20)

where the cross product leads to a component flip (that is, the continuity of Hx leads

to the Πz condition, and the continuity of Hz leads to the Πx condition). Likewise,

the continuity of the perpendicular component of the displacement field Dx = εEx

and of the parallel component Ez lead (when simplified by Eqs. 3.19 and Eq. 3.20

and using J(r, ω) = 0) to boundary conditions at xb for k‖

εleft
∂Πleft

z

∂x
= εright

∂Πright
z

∂x

ikzΠ
left
z +

∂Πleft
x

∂x
= ikzΠ

right
z +

∂Πright
x

∂x
.

(3.21)

For a system with two boundaries, one needs to introduce expansion coefficients in

the materials at the right and left, and two expansion coefficients in the middle layer

(since none can be eliminated by the boundary condition at infinity), for both Πx

and Πz. This leads to four unknowns for Πx and four unknowns for Πz, which can be

solved with the four boundary conditions at the two interfaces (4 + 4 = 8 equations,

to match the 4 + 4 = 8 unknowns from Πx and Πz). The theory of Bolton and Chen

casts these systems of equations in terms of invertible matrices, which generalizes this

method to arbitrarily many parallel layers.

For the simple geometry considered here (Fig. 3.1), a concise expression for the

loss per unit length is given by Couillard et al. (2008), as simplified from the theory of

multilayered slabs developed by Bolton and Chen (1995). In our notation, it becomes

d2P

dz dω
=

e2

π~v2
Im

[∫ kcuty

0

dkyχribbon

∣∣∣
kz=ω/v

]
(3.22)
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where

χribbon =
1

qεk2
‖

{
εk2
y

(v
c

)2 γ̃−ζ̃+

L̃+L̃−
− q2 γ

+ζ−

L+L−

}
(3.23)

in which

q =
√

k2
‖ − ε(ω/c)2, q0 =

√
k2
‖ − ε0(ω/c)2,

hσ = qε0 + σq0ε, h̃σ = q + σq0,

(3.24)

where σ sets the sign in these expressions (i.e., σ can be “+” or “-”), and

γσ = h+ exp(q(2d− x0))− σh− exp(qx0),

ζσ = h+ exp(qx0) + σh− exp(−qx0),

Lσ = h+ exp(qd) + σh−,

(3.25)

and where the terms are in Eqn. 3.23 with tildes on top have the same form as their

the counterpart expressions in Eqn. 3.25, except with hσ replaced by h̃σ as defined

in Eq. 3.24. In the limit where c → ∞, this expression reduces to the electrostatic

expression of Eq. 3.15. Bolton and Chen remark that the term in χribbon with L̃+L̃−

in the denominator is associated with the transverse electric (TE) waveguide modes,

which travel in some direction k̂‖ with E · k̂‖ = 0 and Ex = 0, and the term with

L+L− in the denominator is associated with transverse magentic (TM) modes, which

travel in some direction k̂‖ with Ez/Ey = kz/ky and Hx = 0.

It is also worth quoting the expression for the bulk losses, where, as before,

d2P

dz dω
=

e2

π~v2
Im

[∫ kcuty

0

dkyχbulk

∣∣∣
kz=ω/v

]
, (3.26)

but for this case
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χbulk =
ε(v/c)2 − 1

ε
√

k2
‖ − ε(ω/c)2

(3.27)

takes the place of χribbon in Eqn. 3.22. This expression includes Cherenkov losses, as

can be confirmed directly in the case where ε is real. In this case, the integral can be

performed, and the expression reduces to the classic Frank-Tamm formula

d2P

dz dω
=

e2

~c2

(
1− 1

ε(v/c)2

)
Θ
(
ε(v/c)2 − 1

)
, (3.28)

where Θ(x) is the Heaviside function. However, Eqs. 3.22 and 3.26 are not limited

to Cherenkov losses, as the imaginary part of the dielectric function can account for

energy absorbed by the material that is not tranlated into far-field radiation.

3.3.3 Numerical Results

For these numerical results, I have (somewhat artificially) turned the loss-per-

length results into standard spectra by multiplying by a sample thickness of 100 nm.

In all these results, I have also assumed a 150 µrad aperture, which alters the ky

cutoff used in the integration for each beam energy we under inverstigation. I have

used a dielectric function for the ribbon matching the c-Si data where possible, and

the model of Adachi (1988) in the far infrared region, to avoid negative interpolated

values of ε2(ω), and hence to avoid negative values for the simulated spectra.

In Fig. 3.3, the electrostatic loss (Eq. 3.15) and electrodynamic loss (Eq. 3.22) are

compared for different beam energies (10 keV, 30 keV, 300 keV), at the center of rib-

bons of varying widths (10 nm, 100 nm, 1000 nm, and bulk). The 10 keV beam does

not reach the Cherenkov loss condition v2 > c2/ε for any frequency, and the electro-

static approach is empirically adequate for all the investigated widths. For the 30 keV

beam, one can observe the emergence of sharp spikes in the spectrum atop a broad
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Figure 3.3: Electrostatic spectra (in red) and electrodynamic spectra (in blue) are
shown for three beam energies (10 keV, 30 keV, 300 keV, for columns from left to
right), and for four different sample widths (10 nm, 100 nm, 1000 nm, and bulk,
from top to bottom), for a beam in the center of the ribbon. Where an electrostatic
spectrum cannot be seen, it is indistinguishable from the electrodynamic spectrum.

background where Re[ε(ω)] > 0 as the ribbon width increases. Even as this signal

shifts to lower frequencies with more peaks for wider ribbons, however, the portion

of the spectrum where Re[ε(ω)] < 0 remains well-described by the electrostatic ap-

proach. The 300 keV beam makes the electrodynamic effects even more pronounced,

shifting frequencies of the spectral spikes down further still. Where Re[ε(ω)] < 0, the

electrostatic approach now underestimates the intensity of the spectrum, but contin-

ues to qualitatively follow the electrostatic prediction. Given this (sometimes only

qualitative) success of the electrostatic approach above ∼ 3.4 eV, in the figures below

I have restricted my inquiry to 0-3 eV.

To tease out the source of the spikes in the spectra of Fig. 3.3, I have separately

plotted the TE and TM contributions to spectral maps across the ribbon in Fig. 3.4.
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The sharp spikes in the spectra arise from the TE modes, and the broad background

arises from the TM modes. This difference in character is explained by the fact that

for TE modes, Ez/Ey = −ky/kz, and for TM modes, Ez/Ey = kz/ky, relationships

whose consequences can be seen in Fig. 3.5 below. For each, the spectral maps across

the ribbon clearly show standing wave-type patterns, with the onset of a modal type

occuring at slightly lower energies for the TE modes, and at slightly higher energies

for the TM modes. But at low energies, an extra band of TM contributions without

any nodes presents itself, which means that for thin layers the EEL signal is dominated

by TM mode contributions, as was noticed by Couillard et al. (2008).

Fig. 3.5 presents this TE/TM mode breakdown in more detail, showing the con-

trbutions of various modes as a function of ky, where the value of kz is set by ω/v

as k‖ = (ky, ω/v). The main consideration of whether a mode contributes strongly

or weakly to the spectrum is the projection of the mode’s electric field along the

z-direction. Since these various values for k‖ represent different directions that a

mode might travel, the spectra reveal that TE modes are imaged most strongly at

small values of ky, when they are travelling at small angles relative to the optic axis,

while TM modes are imaged fairly consistently over a larger range of ky values, with

less intense contributions over a wider angular range. This results from the fact that

Ez/Ey ≈ −vky/ω with Ex = 0 for imaged TE modes, and Ez/Ey ≈ vω/ky with

Ex 6= 0 for imaged TM modes, where v is the speed of the beam electron.

One intriguing feature of these plots is that the frequencies of observed modes

decrease both when the ribbon’s width increases, as might be predicted from the

intuitive notion that longer-wavelength standing waves should have lower energy, and

when the the beam energy increases, as might not be intuitively obvious. In the

modes-first treatment of the silicon cylinder discussed below, it is much easier to see

how this outcome results from physical constraints on momentum transfer.
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Figure 3.4: Breakdown of transverse electric (TE, leftmost column) and transverse
magnetic (TM , center column) modes to the full STEM-EEL spectrum (TE + TM ,
rightmost column), for 300 keV electrons penetrating a 100 nm thick silicon ribbons
with widths of 10 nm, 100 nm, and 1000 nm (top row, middle row, bottom row).
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Figure 3.5: Mode contributions sorted by the wavenumber ky for TE (top row) and
TM (middle row) modes are shown alongside their resultant partial EEL spectra,
for 300 keV electrons running along the edge of a silicon ribbon that is 100 nm-wide
(left two columns) or 1000 nm-wide (right two columns). Each ribbon is assumed to
be 100 nm thick. Summed TE and TM contributions are shown in the combined
dispersion relations and spectra of the bottom row.
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3.4 Modeling Silicon Cylinders

In the treatment of STEM-EELS of waveguide modes in dielectric ribbons, the

derivation is consistent because the electric potential and the Hertz vector componets

can be expanded in terms of terms of exp(k‖ · x‖). In cylindrical coordinates, such

an expansion does not help, so I take the route of solving for the waveguide modes

in a dielectric cylinder and calculating their excitation probabilities per distance the

electron travels within the cylinder. This omits the radiative mode contributions,

which are expected to be much smaller than the contributions of waveguide modes.

In this treatment, the azimuthally symmetric waveguide modes split into TE and

TM descriptions, where only TM modes contribute to the STEM-EELS spectrum for

a beam running parallel to the cylindrical interface. Modes with an angular depen-

dence do not cleave into the neat TE/TM categories, but they can be parametrized

according to the relative proportion of Hz and Ez in each mode, allowing the hybrid

modes to be categorized as EH (more like TE) or HE (more like TM).

In Sec. 3.4.1, this analysis is carried out using the simplifying assumption that

ε(ω) is real-valued. In Sec. 3.4.2, I discuss the difficulties in pushing this analysis

forward for lossy dielectrics. And in Sec. 3.4.3, I apply the waveguide model to the

experimental results of Flauraud and Alexander (2019) for amorphous silicon discs,

showing that the modes developed in the waveguide theory can give us lower and

upper energy limits for the modes observed in the disc data.

3.4.1 Undamped Guided Modes

One way to derive the waveguide modes of a cylindrical dielectric rod is to privilege

the z-components of the electric and magentic fields, those components that point

along the cylindrical axis. For quantized modes, one can introduce a fictitious length
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L over which all components are periodic, such that kz = 2π`/L, where ` is some

integer. All modes are also described via an azimuthal quantum number m. Together,

these lead to a spatial factor of exp(i(mθ + kzz)) and a time dependence exp(−iωt),

which are supressed for concision in writing out the field components below.

The Bessel Jm(x) functions are used to describe the radial oscillations of modes

within the cylinder, and the modified Bessel Km(x) functions are used to describe

their radial decay outside the cylinder. To capture this concisely, I introduce notation

to bundle these functions inside and outside the cylinder

Bm(krr) =


J|m|(krr), r ≤ a

J|m|(k
<
r a)

K|m|(k
>
r a)

K|m|(krr), r > a

(3.29)

where

kr =


k<r =

√
ε(ω)ω2/c2 − k2

z , r ≤ a

k>r =
√
k2
z − ω2/c2, r > a

(3.30)

and where the frequency ω in question is assumed to be the eigenfrequency of the

mode. The “<” and “>” superscripts are included on kr for clarity only where

ambiguity exists. (For instance, k<r is always inside Jm(krr), and k>r is always inside

Km(krr).) Factors in Bm(krr) have been introduced to force its continuity at the

cylindrical surface a. Below, I also introduce a factor to soak up any sign differences

that occur between the inside and outside of the cylinder, a “sign function”

sr =


1, r ≤ a

−1, r > a

. (3.31)

that is convenient as a result of my eccentric definition of kr.

If we use the input of the Ez and Hz components, the other components can be

found from the set form in t and z (i.e., exp(i(kzz−ωt))). In a region with dielectric
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function ε and a magnetic permeability µ = 1, the θ̂ and r̂ components of the fields

must follow

Er =
ikzsr
k2
r

(
∂Ez
∂r

+
ω

kzc

1

r

∂Hz

∂θ

)
(3.32a)

Hr =
ikzsr
k2
r

(
− ωε
kzc

1

r

∂Ez
∂θ

+
∂Hz

∂r

)
(3.32b)

Eθ =
ikzsr
k2
r

(
1

r

∂Ez
∂θ
− ω

kzc

∂Hz

∂r

)
(3.32c)

Hθ =
ikzsr
k2
r

(
ωε

kzc

∂Ez
∂r

+
1

r

∂Hz

∂θ

)
(3.32d)

to satisfy the Helmholtz equation at the mode eigenfrequency ω.

The transverse electric (TE) modes are defined by the fact that Ez = 0, and

Hz ∝ B0(krr), with no angular dependence (i.e., m = 0). Their frequencies are

defined implicitly by the eigenvalue equation(
1

k<r

J ′0(k<r a)

J0(k<r a)
+

1

k>r

K ′0(k>r a)

K0(k>r a)

)
= 0 (3.33)

where the derivatives of the special functions are with respect to their arguments

J ′m(x) =
1

2

(
Jm−1(x)− Jm+1(x)

)
, (3.34a)

K ′m(x) = −
(
Km−1(x) +

n

x
Km(x)

)
. (3.34b)

The TE modes cannot be excited by an electron beam running parallel to the cylin-

drical axis, as ETE
z = 0. Since they are not imaged I have not listed their field

components here, although one can easily construct them using Eq. 3.32.

The transverse magnetic (TM) modes, on the other hand, have ETM
z ∝ B0(krr)

and Hz = 0. Since ETM
z 6= 0, TM modes can be imaged by an beam running parallel

to the cylindrical axis. The TM eignevalue equation is
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(
ε

k<r

J ′0(k<r a)

J0(k<r a)
+

1

k>r

K ′0(k>r a)

K0(k>r a)

)
= 0 (3.35)

and allows mode frequencies to be found. Notice that the condition for these modes

that kr is real-valued both inside and outside the cylinder puts limits on the mode

frequencies for a given kz
k2
z

ε
<
ω2

c2
< k2

z , (3.36)

which also applies for the hybridized modes discussed below.

The electric field components for TM modes can be written as

Ez = B0(krr), Er = sr
ikz
kr
B′0(krr), Eθ = 0 (3.37)

and the magentic field components can be written as

Hz = Hr = 0, Hθ = sr
iωε

ckr
B′0(krr). (3.38)

Other modes, modes without azimuthal symmetry, cannot be categorized accord-

ing to the TE/TM distinction. The general eigenmode equation(
1

k<r

J ′|m|(k
<
r a)

J|m|(k<r a)
+

1

k>r

K ′|m|(k
>
r a)

K|m|(k>r a)

)(
ε

k<r

J ′|m|(k
<
r a)

J|m|(k<r a)
+

1

k>r

K ′|m|(k
>
r a)

K|m|(k>r a)

)

=
m2k2

zc
2

a2ω2

(
1

(k<r )2
+

1

(k>r )2

)2
(3.39)

can be solved to find allowed mode frequencies. Following the notation of Snitzer

(1961), the modes can be parameterized using a factor Pm that is related to the ratio

< Hz > / < Ez >, a quantity that we should expect to diverge for the TE modes,

and that we should expect to approach zero for the TM modes. For the hybridized

modes EH and HE modes (|m| ≥ 1), Pm can be calculated as

Pm =

m
a

(
1

(k<r )2 + 1
(k>r )2

)
(

1
k<r

J ′m(k<r a)

Jm(k<r a)
+ 1

k>r

K′m(k>r a)

Km(k>r a)

) . (3.40)
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For the modes given below, 0 < |PHE
m | < 1, and 1 < |PEH

m |.

The electric field components for these modes can be written as

Ez = Bm(krr)

Er =
ikz
kr
sr

(
B′m(krr)− Pm

mBm(krr)

krr

)
Eθ = −kz

kr
sr

(
PmB

′
m(krr)−

mBm(krr)

krr

) (3.41)

and the magnetic field components can be written as

Hz =
ikzc

ω
PmBm(krr)

Hr = − ωε
krc

sr

(
Pm

k2
zc

2

ω2ε
B′m(krr)−

mBm(krr)

krr

)
Hθ =

iωε

krc
sr

(
B′m(krr)− Pm

k2
zc

2

ω2ε

mBm(krr)

krr

) (3.42)

keeping in mind, as always, implicit factors of exp(i(mθ + kzz)) and exp(−iωt).

In modern texts on waveguides (for instance, in Yeh and Shimabukuro (2008)),

modes are typically labelled with two quantum numbers—e.g., TMmn or HEmn—that

refer resepctively to the azimuthal dependence (i.e., the factor of exp(imθ)) and the

order of the solution (i.e., n = 1 labels the lowest-frequency solution for a for a given

m and kz, n = 2 labels the second-lowest-frequency solution, and so on). Solutions

of different kz but the same m and n often have the same qualitative features.

If we wish to simulate the STEM-EELS imaging of these modes, they must be

correctly scaled so as to have physical units. The “field components” given in Eq. 3.37

and 3.38 or in Eq. 3.41 and 3.42 can be normalized using the methods outlined

by Khrennikov et al. (2012), which gives them physical units such that scattering

probabilities can be calculated. In the projection approximation for a point probe at

x = (x0, y0), the EEL transition probability in terms of these normalized electric field

modes for quantum numers ` (for kz), m (for θ) and n (for solution number) is
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P`mn(x) =

(
e

~ω`mn

)2
∣∣∣∣∣
∫
dz Ez

`mn(x, z) exp(iω`mnz/v)

∣∣∣∣∣
2

, (3.43)

and the STEM-EEL spectrum becomes

dP

dω
=
∑
`mn

P`mn(x)δ(ω − ω`mn). (3.44)

Since the normalization factor introduces a factor of L in P`mn for the box size, this

leads to an expression of loss per unit length, d2P/dz dω, where the integral over z

picks out modes for which kz = ω`mn/v.

The undamped approximation is a reasonable for ~ω < 3.1 eV for c-Si and ~ω <

2.0 eV for a-Si, the range for which ε2(ω) < 0.1ε1(ω) for each material, though it

is interesting to see what results we obtain if we push the model past its domain

of apparent validity, as I do in Sec. 3.4.3. But first, to study the model without

impertinence, in Fig. 3.6 the results of this model are shown for a cylinder with a

300 nm diameter and an unvarying dielectric dependence ε = 11.7 (i.e., for crystalline

silicon approximating ε(ω) ≈ ε(0)), mapped with a 60 keV beam and a 300 keV beam.

The leftmost column of Fig. 3.6 shows dispersion relations for the azimuthal quan-

tum numbers m = 0,±1,±2. The dashed black lines indicate the frequency limits at

each value of kz, as given by Eq. 3.36. The dashed dispersion curves in these plots

represent the TE modes (for m = 0) and the EH modes (for |m| ≥ 1), which are

either not imaged (the TE modes) or imaged with low intensity (the EH modes).

The solid dispersion curves in these plots represent the TM modes (for m = 0) and

the HE modes (for |m| ≥ 1), which together dominate the spectra.

The rows of Fig. 3.6 show the contributions from the first three azimuthal quan-

69



0

1

2

3

0

1

2

3

0.01 0.03 0.05
0

1

2

3

0

1

2

3

0

1

2

3

0.01 0.03 0.05
0

1

2

3

0

1

2

3

0

1

2

3

0.01 0.03 0.05
0

1

2

3

0

1

2

3

0

1

2

3

Figure 3.6: Dispersion relations and simulated spectra for an unbounded cylinder
with diameter 2a=300 nm for a cylinder with an unvarying dielectric constant ε =
11.7. For the azimuthal quantum numbers m = 0,±1,±2, dispersion relations are
displayed in the leftmost column, with the m=0 TE modes plotted as dashed blue
lines and TM modes plotted as solid red lines, and with the EH and HE modes of
the m = ±1,±2 dispersion relations plotted, respectively, as purple dashed lines and
solid orange lines. The grey lines intersect these curves to pick out the modes that
are imaged for a 60 keV beam (the shallower slope) and a 300 keV beam (the steeper
slope). The contributions to EEL spectra from modes with m = 0,±1,±2 are shown
on the same rows as their dispersion relations for a 60 keV beam (center) and a 300
keV beam (right), and the summed contributions are shown on the in the top row,
where it can be seen that the TM0n and HE1n contributions dominate.
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tum numbers, imaged by beams of two different energies.2 These beam energies are

reflected in the dispersion relation plots as steep (300 keV) and shallow (60 keV)

grey lines. Intersections of the grey lines with the dispersion curves indicate where

the kz = ω`mn/v condition is fulfilled. These plots show why modes appear at lower

energies for a higher energy beam. An intercomparison of modes between the 60 keV

and 300 keV plots also shows how qualitative appearences of modes with the same

m and n labels (e.g., the TM01 and HE11 modes for each case—the lowest-energy

modes contributing to the spectra for m = 0 and m = 1, respectively) remain fairly

similar, despite the slight wavelength broadening for patterns at lower energies. No-

tice that the summed contributions from ±m = lead to azimuthal symmetry in the

measurements, even though the modes themselves vary azimuthally.

3.4.2 Damped Leaky Modes

As sets of solutions to the Helmholtz equation in cylindrical coordinates, the

waveguide modes listed above are not, of course, unique. If one lifts the restriction

that the arguments of the Bessel funtions are real-valued, for instance, one could,

following Arnbak (1969), write the fields inside the cylinder as

Ez, Hz ∝ J|m|(qinr) (3.45)

and the fields outside the cylinder in terms of Hankel functions

Ez, Hz ∝ H
(1)
|m|(qoutr), (3.46)

where, as before, ω is determined by boundary conditions, and qin and qout are

qin =
√
εin(ω)ω2 − k2

` , qout =
√
ω2 − k2

` . (3.47)

2The modal contributions have been broadened with η = 0.1 eV to build up spectra from summed

Lorentzians, as in Eq. 2.67.
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This form is consistent with the version presented above. Comparing Eq. 3.30

and Eq. 3.47, it is clear that qin = k<r and, when ε is real for r < a, and qin = ik>r

for r > a. Outside the surface of the cylinder, H
(1)
n (ix) ∝ Kn(x), and the eigenvalue

equation from this expansion(
1

qin

J ′|m|(qina)

J|m|(qina)
+

1

qout

H
(1)′

|m| (qouta)

H
(1)
|m|(qouta)

)(
ε

qin

J ′|m|(qina)

J|m|(qina)
+

1

qout

H
(1)′

|m| (qouta)

H
(1)
|m|(qouta)

)

=
m2k2

zc
2

a2ω2

(
1

q2
in

+
1

q2
out

)2

,

(3.48)

is equivalent to Eq. 3.39 above, again in the case that ε is real.

And what would such an alternative expansion give us? The primary reason in

the literature for representing the external parts of the waveguide modes as Hankel

functions is to makes clear that these can be “leaky” modes—that is, modes whose

amplitudes die off exponentially in their direction of propagation, as the light leaks

out. A compelling physical picture of such modes was developed in early papers for

the case of a constant dielectric function (Snyder and Mitchell (1974); Sammut and

Snyder (1976)). In this picture, the propagation constant kz in exp(ikzz) is allowed

to be imaginary, implying a mode whose amplitude becomes arbitrarily large in the

direction of its source, and arbitrarly small along the direction of its propagation. Ra-

dially, the amplitudes of such modes have a turning point outside the surface of the

cylinder, reaching a minimum, then becoming arbitrarily large as r increases. This

counterintuitive description has a straightforward physical interpretation. Within

the cylinder, the EM wave propagates forward almost like a guided mode—except

that part of it leaks out. For a wave traveling in the +z direction inside the cylin-

der, the leaky part of the wave continues to propagate in the +z direction, but also

outward. Signal retardation leads to the area outside the cylinder where the am-

plitude decreases, and to the arbitrarily large growth as r increases from radiative

contributions of the far-off −z-direction.
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In the dispersion relations analogous to those shown in Fig. 3.6, such modes would

be represented as passing through the ω = kzc limiting line, with frequencies above

those allowed by the particular kz for guided modes. Such modes have been exten-

sively treated for the slab waveguide, in Marcuse (1991) and Hu and Menyuk (2009).

In the case of the dielectric cylinder, it would be helpful to be able to use a similar

treatment to incorporate a complex dielectric function. This approach has been taken

by Mansuripur et al. (2016), who calculate complex frequencies in place of the com-

plex propagation constants for the case where the analytic form of ε(ω) is known. In

this context, Cruz y Cruz and Rosas-Ortiz (2015) have made an explicit connection

between classical leaky modes and quantum mechanical resonances, but the meaning

of such complex frequencies becomes unclear if the dielectric function is taken from

data, for which frequencies can only be real.

In fact, many mathematical details for the cylindrical waveguide remain unclear.

Poladian (2005) claims that leaky modes can be orthonormalized, by using a form

of the radial integral that excludes the infinite contributions as r →∞. Yet beyond

this, the questions of what particular branch cuts should be used in the square root

function and the Hankel functions remains unclear. I have implemented Eq. 3.48 in

various versions and have found the resultant mode frequencies to depend noticably

on these choices. Yang and Song (2016) give the clearest existing analysis of these

mathematical issues, but only deals with a the m = 0 case. Given these limitations,

in the analysis of experiments given in the next section, I have limited my treatment

to the approximation of a real dielectric function, despite its obvious shortcomings.

3.4.3 Numerical Results for Silicon Discs

In this section, I use the data on silicon cylinders collected and first reported by

Flauraud and Alexander (2019). Using electron lithography, Flauraud and Alexander
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fabricated amorphous silicon discs of varying diameters (100 nm, 200 nm, 300 nm,

400 nm, 500 nm) and collected STEM-EELS maps from them. A monochromated

300 keV beam was used (100-110 meV FWHM), and the discs were estimated to be

100 nm thick. The plotted data in this section is theirs, and has not been corrected

except to normalize the spectrum at each spatial data pixel.

It is not obvious which dielectric function will be best to use for the simulations

of the amorphous sillicon discs. In Fig. 3.7, two possible approximations are shown,

alongside radially averaged experimental spectra, plotted as an idealized linescan

across the disc for the disc whose diameter is 300 nm. The approximation of the

middle row is that of a flat dielectric dependence ε = 13.5, matching the low-frequency

dielectric constant of amorphous silicon. The approximation of the bottom row is that

of ε(ω) = Re[ε(ω)] for amorphous silicon, which will overestimate frequencies where

the Im[ε(ω)] is large, though not as markedly as when the rise in Re[ε(ω)] is ignored.

Though using only the real part of a complex dielectric function partially invalidates

the normalization scheme, this seems preferable to ignoring the dispersion entirely.

The approximation ε ≈ Re[ε(ω)] has been used in all remaining figures in this chapter.

The linescans of Fig. 3.7 for the disc with a 300 nm diameter reveal modes whose

qualitative properties appear similar to those of the waveguide modes. However,

plotting Ez for the two lowest-energy waveguide modes (HE11 and TM01), reveals that

the modes excited in the unbounded cylinder are not fully contained within the 100

nm thickness of the discs used experimentally. The finite thickness of the experimental

discs also lifts the strict equality kz = ω`mn/v required for the unbounded cylinder.

Indeed, looking at the plot of experimental data, it appears that the HE11-type modes

may be excited as a band, and not as a single discrete mode.

Still, plotting the four most prominent modes in the 300 nm disc as data maps, as

has been done in Fig. 3.8 without radial averaging, shows that the qualitative patterns
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Figure 3.7: First comparison of theory and experiment. Top left shows the radially
averaged (but otherwise uncorrected) spectral data from measurements on a silicon
disc with 2a ≈ 300 nm, left/right reflected to represent an idealized linescan across the
disc. Theoretical comparisons with the unbounded cylinder model are shown (middle
row) for a flat dielectric function ε = 13.5 matching ε(0) for amorphous silicon, and
(bottom row) for a varying dielectric function whose real part matches the measured
dielectric properties of amorphous silicon shown in Fig. 3.1, and whose imaginary part
is artificially set to zero . Dispersion relations for m = 0,±1 are shown for each, and
follow the description of Fig. 3.6. On the top row, the z-component of the electric
field is plotted in cross section for the two lowest-frequency modes.
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Figure 3.8: Low-frequency modes for the d=300 nm disc. Each row has a spectral
map integrated over 0.1 eV from the unprocessed experimental data (far left), a
reflected radial average of the experimental data (center left), a radial linescan of the
predicted intensity from a theory mode (center right), and an in-plane map of Ez for
the theory mode (far right). Dashed lines the center-right and center-left columns
represent the cylinder edges, and scale bars on spectral maps represent 100 nm.
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Figure 3.9: Dispersion relations for discs of diameter 100 nm (top) and 500 nm
(bottom), for azimuthal quantum numbers m = 0 (right) and m = ±1 (left), with
a color scheme matching that of Fig. 3.6. The sloped grey line on each subplot
intersects modes that are excited by a 300 keV beam in the unbounded cylinder
approximation, giving a low-energy limit for each associated mode, and the vertical
black line intersects modes that are excited in the “thin disc” approximation for disc
thickness T=100 nm, picking out the mode for which kz = 2π/(100 nm).

observed in the data for low-order modes match the patterns expected from the

unbounded cylinder quite well, although, as we might expect, mode frequenciies from

the unbounded cylinder uniformly underestimate corresponding mode frequencies in

the disc. But for both the experimental case and its theoretical counterpart, it may

not be possible to separate contributions of the various modes in the spectrum at

higher energies. The last row of the figure illustrates how contributions of nearly

degenerate states can overlap, as the summed contributions of the TM02- and HE22-

type modes in the waveguide model (bottom row, center left) compares more favorably

with the experimentally observed map variations than either mode would on its own.

Energies of the lowest-order modes are sufficiently separated in the EEL spectra
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that we can track them across discs of various sizes. Since experimental disc thick-

nesses must be finite, mode energies measured for fabricated discs should be expected

to exceed those predicted by the waveguide model for corresponding modes. As an

upper bound on mode energies, I have used the “thin disc” approximation of Zaret-

skaya et al. (2018), which looks for modes that have standing waves in z at kz = 2π/T ,

where T is the disc thickness. These two limits are illustrated in Fig. 3.9. Notice that

this upper bound is undefined for the m = 0 modes when T = 100 nm.

Fig. 3.10 shows that the same low-order modes appear in each of the discs, and

that the waveguide and “thin disc” approximations correctly predict upper and lower

bounds, respectively, for the HE11-type and TM01-type modes. In the bottom row,

the “lower bound” is plotted in red, and the “upper bound” is plotted in blue. The

experimental frequencies best match those predicted by the waveguide model for the

discs whose diameter is smallest, which may be expected, as the d = 100 nm disc is

the only one whose thickness is comparable to its diameter, and which may fairly be

said to resemble the waveguide geometry.

3.5 Summary

In this chapter, I reviewed the theory of low-loss STEM-EELS beyond the electro-

static approximation. After a discussion of formal requirements of dielectric models, I

derived the loss-per-distance spectrum in the electrostatic approximation. This led to

a discussion of how this approach could be extended to include electrodynamic effects

via the Hertz vector potential. Simulations for crystalline silicon nanoribbons in the

“classical” approach indicate that it should be possible to observe spatial variation

for TE and TM waveguide modes in crystalline silicon when the ribbon width is d ∼

100 nm, while ribbons with d � 100 nm have a sub-wavelength width, and ribbons

with d� 100 nm approach bulk loss.
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Figure 3.10: For five disc diameters, we show the HE11-type mode map (far left);
averaged spectra taken from the disc edge (center left); the TM01-type mode map
(center right); and averaged spectra taken from the disc center (far right). In the
bottom row, the experimental frequencies are shown (with error bars to represent
integration widths) that run between the theoretical predictions for the infinite rod
and for the thin disc. Scale bars on mode maps represent 100 nm.
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Simulations for amorphous silicon cylinders in the “quantum” approach capture

key low-order modes appearing in STEM-EELS measurements on discs of amorphous

silicon. The lowest-energy mode (resembling the HE11 waveguide mode, with the

appearance of a propagating dipole mode) and the next-to-lowest-energy mode (re-

sembling the TM01 waveguide mode, with azimuthal symmetry and an Ez maximum

along the cylindrical axis) were tracked across discs of different diameters. For fab-

ricated discs of thickness T , the unbounded cylinder model gives a lower bound on

the experimental mode energy, and the “thin disc” approximation, which for which

kz = 2π/T , gives an upper bound on the experimental mode energy.
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Chapter 4

PLASMON-ENHANCED SIGNALS FROM ADSORBATES

4.1 Introduction

This chapter returns to the electrostatic approach of Ch. 2, and presents a “clas-

sical” model for how nanoparticle shape effects might be harnessed to enhance the

vibrational EELS signals from molecules adsorbed at the surface of a nanoparticle.

The analogy here is with tip-enhanced Raman spectroscopy (TERS), where large

signal enhancements can be achieved by bringing a sharp metallic tip near the sam-

ple (Verma (2017)). In that case, as in the EELS case, the molecular surroundings

enhance the local electric field relative to the electric field from the probe, and the

signal enhancement can be related to the electric field enhancement at the molecular

adsorbtion site (Etchegoin and Le Ru (2010)). But in the EELS case, the intrinsically

high spatial resolution may provide advantages over TERS, and it is this promise that

ultimately motivates why such effects merit study.

In electromagnetic enhancement models, the reason for the shape-based field en-

hancement effect is essentially that of a lightning rod—or, for our modeling, of a

prolate spheroid. Fig. 4.1 shows a simplified version of this mechanism, where the

potential of a static electron in the presence of metallic particle is shown. A point

charge in free space (top left) has a spherically symmetric potential; a few equipoten-

tial lines have been been plotted. When a metallic sphere is introduced (top right),

the potential inside the sphere is constant (i.e., Ein ≈ 0), and the equipotential lines

are deformed to produce an increased field at the surface of the sphere. When the

metallic particle, keeping the volume constant, is increasingly deformed, the equipo-
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Figure 4.1: Electric potential and selected electric field lines for a stationary electron
outside a metallic prolate spheroid. Clockwise from top left: bare electron; electron
outside sphere; electron outside prolate spheroid with an aspect ratio=length/width
of 1.8; and electron outside prolate spheroid with an aspect ratio of 10.

tential lines are increasingly bunched, leading to an increasingly strong electric field

near the particle tip for particle aspect ratios of 1.8 (bottom left) and 10 (bottom

right).

To translate this effect to the situation where a molecule is on the tip of a metal-

lic particle and an electron is whizzing swiftly past, I introduce a classical model

for EELS signals in the STEM from an adsorbed molecule (represented as a point

dipole) coupled to the plasmonic excitations of a metallic nanoparticle (represented

as a Drude-type dielectric). For a molecular frequency well separated from the parti-

cle’s plasmonic frequencies the model predicts weaker enhancement with a symmetric

spectral line shape, whereas for a resonance condition the model predicts stronger
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enhancement which can exhibit Fano-type asymmetric line shapes due to multimodal

contributions. The model predicts that the molecular signal enhancement is propor-

tional to the square of the electric field at the adsorption site, and hence that the

enhancement is greatest for a molecule adsorbed on a small nanoparticle with a sharp

tip.

Such enhancement could directly increase the sensitivity of molecular vibrational

STEM-EELS, and could provide a powerful tool for characterizing surface-functionalized

nanoparticles and nanomaterials used for chemical sensing. The results presented here

are in good agreement with the work of Konečná et al. (2018), who came to the same

conclusion using the dielectric formalism to describe the STEM-EELS of a thin molec-

ular layer on metallic nanorods. Our model predicts enhancement factors of several

hundred times using silver nanoparticles with moderate aspect ratios, and of several

thousand times by tuning the aspect ratio to a resonance condition.

In the time since the model in this chapter was first presented in Kordahl and

Dwyer (2019), other investigators have experimentally realized systems that instanti-

ate similar effects to those that our model describes. For instance, Smith et al. (2019)

reports STEM-EELS observations of a Fano-type antiresonance in a gold disc-rod

dimer, whose theoretical description is very similar to the one developed here. Of

even greater relevance is the recent work of Tizei et al. (2020), which demonstrates a

proof of principle for plamon enhancement of vibrational effects, not for adsorbates,

but for thin h-BN flakes with silver nanowires resting on top.

This chapter is organized as follows. Sec. 4.2 provides a derivation which solves

for the EEL spectrum for a molecule adsorbed on the surface of a dielectric nanopar-

ticle. Sec. 4.3 presents detailed calculations of enhancement, with a discussion of the

resulting Fano-type line shapes (Sec. 4.3.1). Adsorbed molecular signals for prolate

spheroids are presented and discussed, including our method of quantifying signal
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Figure 4.2: Route to molecular signal enhancement: the electron beam induces an
electric field Em from the particle (blue ellipse), which excites the molecule (red dot);
then the molecule alters the particle’s induced electric field Ee, which changes the
electron beam’s energy loss. The phase shift δ of the enhanced signal relative to that
of the electron beam (a combination of the phase shifts θm from Em and θe from Ee)
strongly influences the molecule’s observed contribution to the EEL spectrum.

enhancement (Sec. 4.3.2), and results for off-resonance (Sec. 4.3.3) and on-resonance

(Sec. 4.3.4) enhancement.

4.2 Dielectric Nanoparticle with a Surface Molecule

In this section I obtain concise expressions for the expected STEM-EELS signal

from an aloof electron passing a point dipole near the surface of a dielectric nanopar-

ticle. The dipole models an adsorbed molecule, and the nanoparticle surface is de-

fined by a single coordinate ξ1 in an orthogonal separable coordinate system—e.g.,

in spherical, oblate spheroidal, or prolate spheroidal coordinates. The development

here is redundant to that of Sec. 2.5, as our result includes that earlier result for

bare nanoparticles as one part of the solution. I also reuse the notation for har-

monic functions φh introduced above, assuming continuity between φin
h and φout

h at

the nanoparticle surface, and I reuse the notation where uh = ∇φh.

As in the discussion in Sec. 2.5, this calculation begins with an expansion of the

Coulomb potential in terms of the harmonic functions. For two points r< and r>

with radial components ξ1< < ξ1>, the Coulomb potential can be written as
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1

|r> − r<|
=
∑
h

Chφ̄
in
h (r<)φout

h (r>). (4.1)

where the Ch are real coefficients given by Eq. 2.59. After a Fourier transform, this

leads to an expression for the beam potential for a beam electron following a straight

path along the optic axis with z = vt and transverse coordinate x0, as

Φe(r, ω) =
∑
h

−eChIh(x0, ω)φin
h (r), (4.2)

with Ih(x, ω) being the projection integral of the harmonic potential defined by

Ih(x, ω) =

∫ ∞
−∞

dz

v
φ̄out
h (r)eiωz/v. (4.3)

Eqs. 4.1, 4.2, and 4.3 are just reiterations of Eqs. 2.56, 2.61, and 2.62 given above.

If we suppose that the dipole p (the molecule) points along the nanoparticle

surface normal such that

p(ω) = p(ω)n̂, (4.4)

then the dipole potential

Φm(r, ω) = p(ω) · ∇m
1

|r− rm|
(4.5)

can also be expanded using Ch:

Φin
m(r, ω) =

∑
h

Chp(ω)n̂ · ūout
h (rm)φin

h (r),

Φout
m (r, ω) =

∑
h

Chp(ω)n̂ · ūin
h (rm)φout

h (r).

(4.6)

Using these expressions, the electric potential outside and inside the dielectric

nanoparticle is expressed in terms of unknown coefficients Ah(ω) and Bh(ω):

Φout(r, ω) = Φe(r, ω) + Φin/out
m (r, ω) +

∑
h

Ah(ω)φout
h (r),

Φin(r, ω) =
∑
h

Bh(ω)φin
h (r).

(4.7)

85



Notice that in applying the electrostatic boundary conditions Φin
m(r, ω) is used for

the molecular contribution to Φout(r, ω) since the dipole is positioned strictly on the

outside of the nanoparticle’s surface. Applying the boundary conditions leads to

Ah(ω) = Chαh(ω)
(
eIh(x0, ω)− p(ω)n̂ · ūout

h (rm)
)
, (4.8)

reusing the nanoparticle polarizability αh(ω) (Eq. 2.64, Ferrell et al. (1987))

αh(ω) =
ε(ω)− 1

ε(ω)− εh
, (4.9)

and the harmonic values of the dielectric function εh (Eq. 2.53)

εh =
uout
h · n̂

uin
h · n̂

∣∣∣∣
surface

. (4.10)

We suppose the molecular dipole p(ω) has a charge q, reduced mass µ, damping

factor γ, and bare resonant frequency ωm. If the dipole is driven by the electric field

E(ω) along n̂, its equation of motion

q2

µ
n̂ · E(ω) =

(
ω2

m − ω(ω + 2iγ)
)
p(ω) (4.11)

allows us to find p(ω) in terms of two ancillary functions, Em(ω) and ∆ω2
m(ω):

p(ω) =
q2

µ

Em(ω)

ω2
m −∆ω2

m(ω)− ω(ω + 2iγ)
. (4.12)

The first of these ancillary functions

Em(ω) =
∑
h

eChIh(x0, ω)
(
uin
h (rm)− αh(ω)uout

h (rm)
)
· n̂, (4.13)

is the electric field along n̂ driving the molecular dipole (m). The uin
h terms

encode the field contributions of the electron beam, and the uout
h terms encode the
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contributions of the nanoparticle’s induced field. For our model parameters in Section

4.3, at the adsorption site the induced field from the nanoparticle will be much larger

than the direct field from the electron beam.

The function in the denominator of p(ω)

∆ω2
m(ω) =

q2

µ

∑
h

Chαh(ω)
∣∣uout

h (rm) · n̂
∣∣2 (4.14)

arises from the electrostatic interaction of the dipole with its image charge, shifting

the natural resonance ωm to a lower frequency. Physically, given a molecular dipole

p(ω)n̂ outside the dielectric particle surface, we would expect an additional field

Em
m(rm) · n̂ induced by the molecule in the particle to act back on the molecule along

its dipole axis. This field is

Em
m · n̂ = −p(ω)∆ω2

m(ω). (4.15)

Hence the frequency shift is proportional to the electric field per unit dipole at the

molecular site induced by the molecule itself, a sort of self-interaction.

Now we can find the total potential Φ(r, ω) that acts back on the beam electron.

Given our solutions for Ah(ω) and p(ω), the only subtlety here is that we use the

alternative dipole expansion, since the beam electron passes outside the molecule on

the nanoparticle surface:

Φ(r, ω) = Φout
m (r, ω) +

∑
h

Ah(ω)φout
h (r). (4.16)

Next we find the work done on the beam electron by this potential, and by switching

the integration order of ω and z, we extract the EEL spectrum:

dP

dω
=

e

π~
Im

(∫ ∞
−∞

dz

v
Φ(r, ω)e−iωz/v

)
. (4.17)
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In the end, we find that the EEL spectrum splits neatly into two parts, one that

matches that of the bare nanoparticle (without the adsorbed molecule), and one that

captures how the molecule alters the spectrum:

dP

dω︸︷︷︸
full

=
dP0

dω︸︷︷︸
bare nanoparticle

+
dPm

dω︸︷︷︸
molecule

. (4.18)

The bare nanoparticle spectrum has already been quoted in Eq. 2.63

dP0

dω
=

e2

π~
∑
h

Ch |Ih(x0, ω)|2 Im (αh(ω)) . (4.19)

The molecular contribution to the spectrum depends on the dipole amplitude p(ω).

It can be written as

dPm

dω
=

1

µ

q2

π~
Im

(
Em(ω)Ee(ω)

ω2
m −∆ω2

m(ω)− ω(ω + 2iγ)

)
, (4.20)

where Em(ω) and ∆ω2
m(ω) are given by Eqns. (4.13) and (4.14), respectively, and

Ee(ω) is given by a function similar to but distinct from Em(ω):

Ee(ω) =
∑
h

eChĪh(x0, ω)
(
ūin
h (rm)− αh(ω)ūout

h (rm)
)
· n̂. (4.21)

The function Ee(ω) arises from the electric field that acts back on the passing

electron (e), with the ūin
h terms encoding the direct field from the molecule, and the

ūout
h terms encoding the field from the particle induced by the vibrating molecule.

As with Em(ω), for our model parameters in Section 4.3 the induced field from the

nanoparticle tends to dominate the direct field from the molecule.

Signal enhancement thus roughly takes the following route: the electron beam

induces an electric field in the nanoparticle, which drives the molecular dipole, which
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induces a response electric field in the nanoparticle, which then acts back on the

electron beam. This process is illustrated schematically in Fig. 4.2 above, which

indicates also that δ, the combined phase shift of the molecular signal relative to the

beam potential, resulting from the summed phase shifts from Em and Ee, will have

important effects in the observed line shapes for the adsorbate signal. These issues

are further analyzed in Sec. 4.3.1.

4.3 Molecular Adsorbate Signals

This section presents detailed simulations of the enhancement of the EELS sig-

nal from an adsorbed molecule on the surface of a prolate-spheroidal Drude-metal

nanoparticle. As we have seen in Ch. 2 (e.g., in Fig. 2.6) the mode frequencies of

the prolate spheroids exhibit large redshifts with increasing eccentricity. For a Drude

metal considered in this section the behavior will be similar, but with stretched high-

and low-frequency limits ω` → ωp/
√
ε∞ and ω0 → 0. Thus the surface plasmonic

excitations of prolate spheroidal metallic nanoparticles with large cross-sectional ec-

centricities are shifted into the infrared, and hence can be used to enhance molecular

vibrations. In some cases, the nanoparticle excitations can be “tuned” to a reso-

nance condition, giving a large degree of enhancement, as shown below. Generally,

we expect that a molecule positioned at site of higher curvature on the nanoparticle

surface to experience a larger electric field, and thus a larger degree of EELS en-

hancement.1 Hence we consider molecules adsorbed on the tips of prolate spheroids.

1Some have been tempted to overinterpret the role of surface curvature in situations involving

metallic surfaces. Price and Crowley (1985) show that while it is sometimes claimed that an isolated

charged conductor will maximize the electric field strength wherever its surface curvature is maxi-

mized (an idea they call the “lightning-rod fallacy”), it is possible to construct geometries where the

two do not coincide. On the other hand, Liu (1987) derives explicit expressions relating the surface

charge to the surface curvature for charged metallic ellipsoids, so it is not unreasonable to expect
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(Oblate spheroids yield similar but less dramatic trends, and are not presented here.)

We assume a 60 keV beam, but now we assume it has a finite energy width

described by a Gaussian distribution with a full-width at half-maximum (FWHM) of

5 meV. The nanoparticle’s Drude parameters are taken to be those of silver (Yang

et al. (2015)): ~ωp = 8.9 eV, ~η = 0.10 eV, ε∞ = 5. The molecule is defined via

its charge q, reduced mass µ, resonant frequency ωm, and damping parameter γ; we

have used q = e, µ = 1 amu, ~ωm = 530 meV, and ~γ = 12 meV. This large natural

damping γ compensates for another omission in our calculations.

For an adsorbed molecule realistically near the nanoparticle surface, the predicted

frequency shift from ∆ω2
m(ω) (Eqn. (4.14)) is unrealistically large. One reason for

this overestimation is that a point dipole (representing the molecule in our model)

can interact with the arbitrarily fine spatial variations of the arbitrarily high-order

harmonic modes, and if the molecule is allowed to approach the surface, this shift

diverges. A model similar to ours (Ford and Weber (1983)) included finite-size effects

but also overestimated the frequency shifts observed in IR studies.2 To address this

problem, we have used a “physicist’s solution,” and have set ∆ω2
m(ω) to zero. But this

breaks self-consistency, so we need to introduce a large γ to maintain positivity for all

spectra. The effect of setting ∆ω2
m(ω) to zero should be a systematic underestimate

of the molecular signal (since signal is inversely related to frequency), and a system-

such relationships to hold approximately, for the physical reasons illustrated in Fig. 4.1.

2Shifts in the vibrational frequencies of adsorbate molecules, relative to corresponding frequencies

of molecules in gas phase, tend to be less than 5%, and have been studied as a function of such

variables as electric field orientation dependence (Cohen de Lara (1999)) and surface coverage (Kho

et al. (2012)). But the questions involved are complex. For chemisorbed molecules, frequency shifts

can be either positive or negative, depending on the specifics of the surface bonding. I have not

found any studies of frequency shifts studied as a function of particle shape.
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atic overestimate of the molecular signal-to-noise (since this neglects any additional

particle-mediated peak broadening). The function ∆ω2
m(ω) captures the interaction

of the molecular dipole with its own image dipole, so its neglect also eliminates the

ability of more sharply curved absorption sites to encourage larger molecular reso-

nance redshifts. I have included ∆ω2
m(ω) in the discussion of line shapes below, but it

should be understood the such contributions are not included in the numerical results.

4.3.1 Off- vs. On-resonance – Fano Line Shapes

Since the molecular damping γ is small compared to the dielectric particle damp-

ing η, the phase of the molecular vibration varies quickly relative to phase of the

nanoparticle’s induced electric field. As shown below, when a resonance condition is

approached—that is, when a nanoparticle mode frequency approaches the molecular

frequency—this typically leads to a strong Fano-type asymmetric spectral signature

in the molecular spectrum dPm/dω. (Limonov et al. (2017) points out that this is a

general feature of coupled systems.) If the molecular frequency is far separated from

any of the nanoparticle’s harmonic frequencies, then dPm/dω reverts to a weaker

symmetric bump poking above the bare nanoparticle signal.

To see this, we might assume that ∆ω2
m(ω) is slowly varying, such that it can be

absorbed into the other parameters of the model, writing

ω′2m = ω2
m − Re[∆ω2

m(ωm)],

γ′ = γ + Im[∆ω2
m(ωm)]/2ωm

(4.22)

such that the molecular contribution to the spectrum (Eq. 4.20) becomes

dPm

dω
≈ 1

µ

q2

π~
Im

(
Ee

m(ω)Em
e (ω)

(ω′m)2 − ω(ω + 2iγ′)

)
. (4.23)

The terms Ee
m(ω) and Em

e (ω) in Eq. 4.23 both contain information about the phase

as well as the magnitude of the induced fields, but to understand their importance we
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also need to appreciate the importance of the molecular resonance frequency in the

denominator. This term is easier to think about in terms of the familiar Lorentzian

distribution, so we can carry out the approximation that allows for such a replacement,

throwing away small terms, and terms that are small near ω′m:

1

ω′2m − ω2 − 2iγ′ω
=

−1

(ω + iγ′ − ω′m)(ω + iγ′ + ω′m) + �
�γ′2

≈ − 1

2ω′m

(
1

ω + iγ′ − ω′m
−

��
���

��
1

ω + iγ′ + ω′m

)

≈ − 1

2ω′m

(
(ω − ω′m)− iγ′

(ω − ω′m)2 + γ′2

)
=

1

2ω′mγ
′

(
i− Ω

1 + Ω2

)
.

(4.24)

In the last line, a new dimensionless quantity Ω = (ω − ω′m)/γ′ has been introduced

which gives us our position in the spectrum relative to the resonance, in terms of the

resonance width. The magnitude of this term is small except around ω′m, and the

numerator forces a phase shift of π across the resonance.

Near the molecular resonance the fields Em(ω) and Ee(ω) (Eqns. 4.13 and 4.21) can

be estimated respectively by |Em(ω′m)| exp(iθm) and |Ee(ω
′
m)| exp(iθe). Substituting

these, and the expansion for the denominator, into Eq. 4.20 yields an approximate

expression for the molecular contribution to the spectrum

dPm

dω
≈ 1

µ

q2

π~
|Em(ω′m)Ee(ω

′
m)|

2ω′mγ
′

(
cos(δ)− Ω sin(δ)

1 + Ω2

)
, (4.25)

where δ = θm + θe. In Eq. 4.25 the values δ = 0 and π correspond to positive- and

negative-symmetric line shapes, respectively, whereas δ = π/2 and 3π/2 correspond

to asymmetric line shapes. For our model parameters, the fields Em(ω) and Ee(ω),

and hence the phase δ, are dominated by the nanoparticle response.

Well below the nanoparticle frequencies (off-resonance), the nanoparticle responds

“in phase” with the Fourier-decomposed field of the electron beam. Hence δ = 0+0 =
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Figure 4.3: Relating enhanced molecular line shapes to δ, the cumulative phase shift
from Em and Ee (top row). In (a-d) the molecule adsorbed on a silver sphere gives an
off-resonance condition (c) leading to δ ≈ 0 and hence a symmetric line shape (d). In
(e-h) a long prolate spheroid gives an on-resonance condition (g) leading to δ ≈ π/4
and hence an asymmetric line shape (h). The grey strips in (c) and (g) indicate the
plotting range used in (b), (d), (f), and (h). The red dots indicate the molecules in
the cartoons (a) and (e), which are not to scale. The sphere and spheroid both have
a central thickness h = 50 nm.
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0, corresponding to a positive-symmetric line shape. At a nanoparticle frequency ωh

(on-resonance), the phase of the response due to mode h is π/2. Thus, in a simple

picture consisting of just the single nanoparticle mode h, at resonance δ = π/2 +

π/2 = π, corresponding to a negative-symmetric line shape. The molecular spectrum

dPm/dω sits atop the bare nanoparticle spectrum dP0/dω, so the condition that

dPm/dω < 0 implies that the field causing the beam electron’s energy loss is weaker

in the presence of the molecule. But when the contributions of many nanoparticle

modes are included, δ can deviate significantly from the “simple resonance value” of π.

Hence at a resonance condition we can obtain Fano-type line shapes with significant

asymmetry, which ultimately arises from multimodal contributions.

Fig. 4.3 compares line shapes for the molecule adsorbed on the surface of a sphere

and a prolate spheroid. The sphere, with its low eccentricity, gives an off-resonance

condition with δ ≈ 0, leading to a symmetric line shape. At the resonance condition

ωm ≈ ω10 (i.e., the molecular frequency matches the harmonic frequency associated

with ` = 1, m = 0), the phase δ ≈ π/4 ( 6= π due to multimodal contributions),

leading to a Fano-type asymmetric line shape. These spectral features are similar

to those predicted in the recent work of Konečná et al. (2018), who modeled the

spectral response of a thin dielectric layer, representing a molecular layer, on the tip

of a metallic nanorod, using finite element analysis.

4.3.2 Quantifying Signal Enhancement

The intensity of the enhanced molecular signal is most easily characterized in the

off-resonance limit that δ = 0 and the line shape is symmetric. Analytically, if we

assume that the electric field Eout(rm, ω) varies slowly in ω near the bare molecular

frequency ω′m, and that the molecular damping factor γ′ � ω′m, the total enhanced

signal obtained from integrating over the resonance is
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Pm ≈
q2

2~ω′mµ
|Eout(rm, ω

′
m) · n̂|2, (4.26)

where, as before, γ′ and ω′m are the shifted parameters. This is the same as for a

bare molecule, except the field |Eout(rm, ω
′
m) · n̂|2 now contains contributions from the

dielectric particle, and not just from the beam electron.

Hence the enhanced signal is proportional to the square of the field at the molec-

ular site. Intuitively, this is squared because one factor of the electric field arises

from the molecular excitation, and one factor arises from the molecule acting back

on the nanoparticle. This contrasts with the case of surface-enhanced Raman spec-

troscopy (SERS), in which the signal enhancement scales roughly as the electric field

enhancement to the fourth power: two powers for photoabsorption, and two for pho-

toemission, as discussed by Ru and Etchegoin (2006).

Fig. 4.4 illustrates how the signal has been quantified, using the same physical

situations as in Fig. 4.3. The full EEL spectrum dP/dω (plotted in blue) is dom-

inated by the nanoparticle, but the presence of the molecule causes the spectrum

to depart from the bare nanoparticle spectrum dP0/dω. This departure constitutes

the enhanced molecular spectrum dPm/dω (plotted in purple). Compared to the bare

molecular spectrum dP 0
m/dω (plotted in red), for which the nanoparticle is absent, the

enhanced molecular spectrum exhibits greater intensity, since the adsorbed molecule

is coupled to the nanoparticle, whose response to the adsorbed molecule ultimately

causes the signal enhancement.

Fig. 4.4 defines three quantities: the background signal from the nanoparticle P0,

the enhanced molecular signal Pm, and the bare molecular signal P 0
m. We then define
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Figure 4.4: Quantifying signal enhancement from prolate spheroids with signifi-
cantly different aspect ratios (w/h). Plots (a-c) show signals for the sphere of Fig. 4.3,
and plots (d-f) show signals for the prolate spheroid of Fig. 4.3. The molecular sig-
nal Pm in (b) and (e) is estimated by finding the maximal feature in the enhanced
spectrum and integrating the FWHM. The bare-nanoparticle signal P0 in (a) and
(d) is found by integrating the same spectral region for the background. The bare
molecular signal P 0

m in (c) and (f) is equal for both cases, as it only depends on the
beam distance from the molecule (5 nm throughout).

signal enhancement =
Pm

P 0
m

. (4.27)

The signal enhancement is defined relative to the bare molecular signal. The widths

of the peaks in dPm/dω and dP 0
m/dω are determined both by the particle damping

γ and the beam’s energy width. For each, we integrate over the FWHM so that the

signal enhancement is insensitive to the beam’s energy width.

The enhanced molecular spectrum sits atop the spectrum from the nanoparticle, so

we also quantify the enhancement of the signal-to-noise ratio (SNR) of the molecular

signal, assuming Poisson noise only:
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Figure 4.5: Full EEL spectra (a, b), signal enhancements (c, e), and SNR enhance-
ments (d, f) for adsorbed moleules on the tip of prolate spheroids of aspect ratios
(AR = w/h) between 1 and 10 (specific ARs are color coded). Cases of constant
thickness are shown, both with h = 50 nm (left) h = 10 nm (right).

SNR enhancement =
SNRm

SNR0
m

≈ Pm/
√
P0

P 0
m/
√
P 0

m

=
Pm√
P0P 0

m

.

(4.28)

The SNR enhancement is defined relative to the SNR0
m of the bare molecular

signal. The SNR enhancement depends on the background signal P0 which is propor-

tional to the integration interval, scaling inversely with the square root of the width

of the molecular peak.

4.3.3 Off-resonance Enhancement

Fig. 4.5 shows how the signal enhancement and the SNR enhancement vary as

the prolate spheroid’s aspect ratio (AR = width/height) changes from 1 to 10. Both

“thick” (h = 50 nm) and “thin” (h = 10 nm) prolate spheroids are considered.

All of these are off-resonance cases where the nanoparticle mode frequencies lie well
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above the molecule’s resonance frequency ωm. For AR = 10, we find the greatest

signal enhancements of about 50 in the thick case, versus about 250 in the thin case.

The greater enhancement for the thin nanoparticles comes from the sharper tip, and

hence the stronger electric field at the adsorption site. The results here also give us

our first confirmation that small, sharp nanoparticles will help the most with signal

enhancement. Along with its sharper tip, a small nanoparticle contributes a lesser

background signal, allowing the molecular signal to stand out. For AR = 10, the

calculations in Fig. 4.5 predict a SNR enhancement barely above unity for the thick

nanoparticle, versus about 16 for the thin nanoparticle. Still, without larger particle

aspect ratios, adsorbate signals are unlikely to be detected.

Fig. 4.6 explores how the SNR enhancement varies more generally. First con-

sider the red curves, which use the same nanoparticle/beam geometry as above. We

investigate for a fixed thickness h = 10 nm how the molecular signal, the signal en-

hancement, and the SNR enhancement vary with nanoparticle length, specified by

w, keeping the beam distance from the adsorbate constant at 5 nm. The signal en-

hancement increases with increasing nanoparticle length, which is readily understood

in terms of the local electric field, as explained above. In the colormap figures, we

notice that the SNR enhancement is more closely aligned with the thickness h of the

nanoparticle than with the aspect ratio.

The blue and grey curves in Fig. 4.6 investigate another possibility, as raised by

Konečná et al. (2018). They reported the possibility of “ultraremote sensing,” with

the beam on the opposite side of the nanoparticle as the adsorbate, as shown in our

cartoon by beam B. While the simulations of Konečná et al. differ from ours—they

use a thin dielectric layer on the nanoparticle surface rather than a point dipole—

our results are consistent. At far beam distances, the intrinsically small signal from

the bare molecule allows for enormous signal and SNR enhancements. But when
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Figure 4.6: Results are given for beam positions adjacent to the molecule (A) and
opposite to the molecule (B), with the beam 5 nm from the particle in each case. The
colormap plots (b) and (e) summarize many different cases for the adjacent beam
(A). Plots (a), (c), and (f) contrast outcomes from beams A and B in terms of the
definitions given in the main text, while (d) and (g) compare the results of beam B
to the benchmarks used for beam A.

the “ultraremote enhancement” is defined in terms of the expected signal for case

A, as in the grey curves in Fig. 4.6, we find the small relative enhancements for the

ultraremote beam B that one might expect.

4.3.4 On-resonance Enhancement

Pushing toward higher aspect ratios, Fig. 4.7 shows how particle resonances can

be harnessed to improve enhancements further still. An obvious possibility is to
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Figure 4.7: Calculations for adsorbates on prolate spheroids with fixed AR = 29.23
(a-c, with ω10 matching ωm), and AR = 18.32 (d-f, with ω10 − 2η matching ωm). For
thickness h = 5 nm, (a) and (d) show the molecular spectra, while (b) and (e) show
the total spectra. In (c) and (f), we quantify the signal enhancement (in blue) and
the SNR enhancement (in red) for the two cases.

tune the aspect ratio of the particle such that the lowest particle resonance ω10 (that

is, the resonance corresponding to mode ` = 1, m = 0) aligns with the molecular

resonance ωm. This leads to enormous signal enhancements, up to several thousand

times, with the signal manifesting as a Fano-type dip into rather than a bump atop

the nanoparticle background. (Recall that the enhancement effect comes about as

a change to the signal from the particle, so the fact that the “molecular signal” is

negative here is not inconsistent, though it is perhaps semantically clumsy.) Such

dips are sensitive to the beam energy resolution, and the position of the dip atop a

particle resonance limits the achievable SNR enhancement.

One way both to lower the nanoparticle background signal and to regain an asym-

metric bump in place of the resonant dip is to tune the particle resonance ω10 such
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that it lies just above the molecular resonance ωm—2η above, say, such that the

molecular resonance lies on the bottom edge of the particle resonance. Fig. 4.7 shows

that such particles will produce roughly half the signal enhancement of the parti-

cles tuned to overlap the molecular resonance directly, yet such off-resonant tuning

is able to achieve somewhat better SNR enhancements, with the SNR enhancement

approaching 100 for small particles with a h = 5 nm thickness.

4.4 Summary

In this chapter, I extended the Born-Huang theory of molecular vibrations to

model the vibrational EEL signal from a molecule adsorbed on the surface of a metallic

nanoparticle. The degree of signal enhancement in this model is proportional to the

square of the local electric field at the adsorption site. Detailed expressions for the

associated energy-loss spectrum split the spectrum into two parts, one from the bare

nanoparticle, and the other from the molecule. The bare nanoparticle expression is

the same as the expression derived in Ch. 2. Hence the molecular signal sits atop

the bare nanoparticle signal, and can add to or subtract from the nanoparticle signal,

depending on its phase relative to that of the surface plasmons.

Physically plausible parameters for a molecule adsorbed on the tip of a silver

prolate spheroid yielded predicted signal enhancements of several hundred times for

nanoparticles of suitably small thickness (e.g., 10 nm) and high aspect ratio (e.g., 10).

Signal enhancements of several thousand times were predicted when the nanoparticle’s

lowest surface plasmon frequency was tuned to the molecular resonance frequency.

Near resonance, the resultant spectral line shapes typically exhibit significant Fano-

type asymmetry from the contributions of multiple surface plasmon modes.

Such enhancement effects could significantly increase the sensitivity of the STEM-

EELS of molecular vibrations. Recent work by Tizei et al. (2020) using plasmonic
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nanorods suggests that such enhancement effects may be useful for probing the lo-

cal vibrational properties of dielectric materials. Combined with the simultaneous

imaging capabilities of the STEM, such effects could also provide a powerful tool for

characterizing surface-functionalized nanoparticles for chemical sensing applications.
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Chapter 5

STEM-EELS MAPPING OF POINT DEFECTS

5.1 Introduction

Point defects in bulk materials define a “final frontier” for STEM-EELS imaging.

Interfaces (2D defects) and dislocation lines (1D defects) have been well-studied at the

atomic level, but the small volumes and weak signals associated with individual point

defects (0D defects) makes them intrinsically hard to detect. The last decade has

seen progress in the analysis of individual heavy dopant atoms within bulk materials

using annular dark field imaging (ADF-STEM), as in the work of Gunawan et al.

(2011), Mittal and Mkhoyan (2011), Phillips et al. (2012), and Johnson et al. (2017).

Progress has also been reported in imaging lighter dopants or vacancies embedded in

lower-dimensional materials by Liu et al. (2011) and Senga and Suenaga (2015). But

locating lighter dopants or vacancies in 3D materials remains difficult.

Yet such point defects are crucial to the operation of many semiconductors, quan-

tum computing materials, quantum sensing materials, etc. Locating and characteriz-

ing them typically relies on optical techniques such as photoluminescence, where the

spatial resolution is diffraction-limited by the wavelength of the light, which typically

requires their properties to be measured in ensembles. The hope of improving the

performance of defect centers, both individually and as ensembles, now motivates the

development of new techniques aiming toward higher spatial resolution, a capability

that would be valuable to many physicists, materials scientists and chemists.

Of course, this chapter forwards STEM-EELS as a promising possiblity. EELS

does not require the atomic number of a point defect to differ greatly from that of
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the atoms surrounding it, making it applicable to important points defects such as

nitrogen-vacancy (NV) centers in diamond. Using EELS, point defects have already

been located at submicron levels, as with the characterization of NV concentrations

in nanodiamonds (Chang et al. (2016)) and reports of poorly-understood defects in

BAlN thin films (Wang et al. (2019)). On the other hand, we expect that the EELS

signal (or any spectroscopic signal) associated with any individual point defect to be

very weak. Moreover, apart from the weak signals, a grand challenge in detecting

individual point defects via EELS is the degree of spatial delocalization given by

v/ω: since it is inversely proportional to the energy loss ~ω, the resolution of spatial

mapping becomes poor (∼ 10 nm) for the excitation energies of interest (∼ 1 eV).

The style of calculation in this chapter is quite different from any of those that

preceede it, in that it applies first-principles techniques to model physical systems

from the ground up. Here density functional theory (DFT) is used to model two point

defects in diamond, and transitions from the single-particle DFT wave functions are

used to make predictions, from the corresponding STEM-EELS maps for different

defect orientations, to the feasible experimental localization of such defects, and to

the plane-wave cross-sections for the electronic transition under study. As will be

shown, these defects can be intuitively understood using a tight-binding description,

and the qualitative and quantitative aspects of this development support each other.

Given the enormous literature on DFT as a method for first-principles model-

ing, one could fill an entire thesis devloping of the underlying theory, including its

strengths and shortcomings—which would inevitably lead through the familiar sign-

posts of Hohenberg and Kohn (1964) and Kohn and Sham (1965), the replacement

of a 3N -dimensional many-body wavefunction with N 3-dimensional single-particle

electron wavefunctions, and the development of various functional approximations.

This material will not be reiterated here, as I am content to gesture toward the re-
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view of Hasnip et al. (2014) demonstrating the variety of spectroscopic signals that

have been successfully predicted using DFT, and to place this study in that lineage.

The prospects of using STEM-EELS to locate individual point defects in 3D mate-

rials are analyzed in the following pages. I consider the negatively-charged nitrogen-

vacancy (NV−) center in diamond, with a zero-phonon transition energy of ∼1.9 eV,

and the charge-neutral silicon-vacancy (SiV0) center in diamond, with a zero-phonon

transition energy of ∼1.3 eV. The NV− center has been studied for half a century

(Doherty et al. (2013)), but continued interest is spurred by its relevance as a room-

temperature qubit with well-established read-out procedures (Weber et al. (2010);

Neumann et al. (2008)). When the robust spin coherence of SiV0 is considered along-

side advances in production and initialization (Rogers et al. (2014); Dhomkar et al.

(2018)), it also emerges as a strong candidate for quantum information applications

(Green et al. (2017)). Both defects show promise as single-photon emitters to be used

as building blocks in quantum information science, quantum sensing, and metrology.

The results of this chapter were first presented in Kordahl et al. (2019). This work

was completed in heavy collaboration with my co-authors. It takes the following order.

First, I review how STEM-EELS maps can be constructed from DFT wavefunctions

(Section 5.2) and describe our computational methods (Section 5.3). Then electronic

structures are reviewed and spectral maps are presented for NV− (Section 5.4) and

SiV0 (Section 5.5). These results are discussed (Section 5.6) before concluding.

5.2 STEM-EELS of Electronic Transistions

The theoretical approach presented in this chapter differs cosmetically from that

of earlier chapters, insofar as the transitions from |0〉 → |1n〉 elided the role of the

“vacuum state” |0〉, while here the single-particle ground state has an obvious role.

The Møller potential formalism developed by Dwyer (2005, 2015, 2017) covers both
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cases, with the earlier version in some sense a special case of the general theory.

For a defect electronic transition ϕ0 → ϕn, the Møller potential is given by

Φn(r) = −e
∫
d3r′

ϕ∗n(r′)ϕ0(x′)

|r− r′|
. (5.1)

This is similar to the electrostatic Φh(r) of Ch. 2 (Eq. 2.29), but it explicitly includes

both the initial and final states. The quantity −eϕ∗nϕ0 is essentailly the charge density

that gives rise to this transition potential, and we refer to it as the transition charge:

ρn(r) = −eϕ∗n(r)ϕ0(r). (5.2)

The Møller potential describes the instantaneous Coulomb interaction between the

beam electron and the transition charge ρn. The only relativistic correction in this

calculation is in the speed of the electron v, which is found using the relativistic

version of the beam kinetic energy, (1/
√

1− v2/c2 − 1)mec
2.

The projected Møller potential is defined as

Φn(x) =

∫ ∞
−∞

dzΦn(r) exp(iωnz/v), (5.3)

where ~ωn is the energy loss associated with the transition. The projected Møller

potential is conveniently calculated via Fourier space as

Φn(x) =

∫
d2q

(2π)2
Φ̃n(q) exp(iq · x), (5.4)

where

Φ̃n(q) = − 4πeρ̃n(q)

q2 + ω2
n/v

2
. (5.5)

Here ρ̃n is the Fourier transform of the projected transition charge density

ρ̃n(q) =

∫
d2x ρn(x) exp(−iq · x), (5.6)
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with the projected transition charge density itself being defined by

ρn(x) =

∫ ∞
−∞

dz ρn(r) exp(iωnz/v). (5.7)

As before, we adopt the projection approximation and assume that inelastic scat-

tering is accurately described by a first-order interaction. Under these approxima-

tions, the inelastic scattering can be regarded as taking place within a plane coinciding

with the point defect and perpendicular to the optic axis ẑ. In this plane, the wave

function describing beam electrons in the nth inelastic channel is given by

ψn(x) =
ie

~v
Φn(x)ψ0(x), (5.8)

where v is the speed of the beam electron, Φn(x) is the projected Møller potential,

and ψ0 is the wave function for the elastic channel.

For STEM-EELS, the elastic wave function ψ0 is that of a focused beam. The

strength of the EELS signal corresponds to the probability that beam electrons will be

scattered inelastically and admitted by the EELS collection aperture in the diffraction

plane. This probability is calculated by integrating the squared modulus of the Fourier

transform of the inelastic wave function over those wave vectors admitted by the

collection aperture, which reproduces the probability of Eq. 1.7 above. In general,

the inelastic wave function will undergo elastic scattering from the atoms in the sample

downstream from the defect plane before reaching the diffraction plane. However, for

simplicity elastic scattering has been neglected, and all inelastically scattered electrons

are presumed to be collected. The relatively large inelastic delocalization length v/ω

and the consequent nanometer, rather than atomic-scale, spatial resolution mean that

these simplifications do not significantly affect our conclusions in what follows.
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5.3 Computational Methods

Our DFT calculations have been performed using the Vienna Ab initio Simulation

Package (VASP), as documented in Kresse and Hafner (1993), Kresse and Hafner

(1994), Kresse and Furthmüller (1996), and Kresse and Furthmüller (1996). We used

a 4×4×4 conventional supercell (43×8−1 = 511 atoms) with Γ-point sampling and a

420 eV cutoff. Projector augmented-wave (PAW) pseudopotentials were used (Blöchl

(1994); Kresse and Joubert (1999)) under the generalized-gradient approximation

(Perdew et al. (1996)). Excited states were calculated using an occupation constraint.

The pseudized wave functions in this approach match the all-electron wave functions

outside the atomic cores where the pseudopotentials are deployed, so we should expect

the wave functions for the defect states to accurately describe the defect states as

independent electron states, localized as they are in the vacancy regions.

Real-space electron wave functions were constructed on a 3D grid using Fourier

coefficients extracted via WaveTrans (Feenstra et al. (2013)). These symmetrized

wave functions were used to compute the real-space transition charges (Eq. 5.2).

Using the 3D transition charge densities, we calculated the projected transition charge

densities on a 2D grid (Eq. 5.7), padded the grid as needed for convergence, and

Fourier-transformed the results to construct the q-space projected Møller potentials

(Eq. 5.5). Inverse Fourier transformation yielded the projected Møller potentials in

real space (Eq. 5.4). Since the dielectric function for diamond is fairly flat for the

frequencies of interest (Zhang et al. (2008)), screening was incorporated by dividing

the projected Møller potentials by the static dielectric constant of diamond, ε0 = 5.7.

The wave functions output by VASP were initially complex-valued, but were

made real-valued by similarity transformations among degenerate states. For non-

degenerate wave functions, this only required multiplication by an overall phase. But
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for degenerate wave functions, a unitary transformation was required, which corre-

sponds to a similarity transformation between irreducible representations (irreps) of

the relevant point group.

For instance, the ex/y wave functions (as in the NV− case of Fig. 5.2 below) form

a representation of the C3v group. C3v has the following as one possible irrep:

E =

1 0

0 1

 , C3 =

−1
2
−
√

3
2

√
3

2
−1

2

 , C2
3 =

 −1
2

√
3

2

−
√

3
2
−1

2

 ,

σ1 =

−1 0

0 1

 , σ2 =

 1
2

√
3

2
√

3
2
−1

2

 , σ3 =

 1
2
−
√

3
2

−
√

3
2
−1

2

 .

(5.9)

Physically, E represents no change to the wave function; C3 and C2
3 represent 2π/3

and 4π/3 rotations about the defect symmetry axis; and σ1,2,3 represent reflections

acoss the planes defined by the symmetry axis and the carbon nuclei of C1,2,3 (see

Fig. 5.1). To find the irrep M ′ implied by a particular pair of twofold degenerate

DFT wave functions |ψ′1〉 and |ψ′2〉 with ex/y symmetry, the matrix elements are

M ′
ij = 〈ψ′i| Ô |ψ′j〉 . (5.10)

As a concrete example, if one wishes to calculate C ′3, the operator Ô rotates |ψ′j〉 by

2π/3 about the symmetry axis before the inner product is made with |ψ′i〉.

As an intermediary step to finding real-valued wave functions |ψ1,2〉 from linear

combinations of |ψ′1,2〉, we find the transformation matrix U that makes a similarity

transformation between the representation M of Eq. 5.9 and the representation M ′:

M = U †M ′U. (5.11)

General approaches exist for finding similarity transformations between irreps (see

Mozrzymas et al. (2014)), but here we use a simplified approach that hinges on the
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fact that all group elements in M ′ can be formed from products of σ′1 and C ′3. If these

two follow Eq. 5.11, so will the rest.

Since a similarity transformation preserves eigenvalues, σ′1 will have eigenvalues

of -1 and +1 with corresponding orthonormal (column) eigenvectors ê− and ê+. The

2×2 matrix U = (ê−, δê+) will satisfy Eq. 5.11 for σ′1 for any |δ| = 1 by construction.

One can then use C3 = U †C ′3U to find an appropriate δ. This U will still contain an

overall phase ambiguity, but the wave functions |ψ′′1,2〉|ψ′′1〉
|ψ′′2〉

 = U

|ψ′1〉
|ψ′2〉

 (5.12)

will differ from our desired real-valued wave functions |ψ1,2〉 at most by an overall

phase, which can easily be corrected at the end of the calculation.

This approach is also works for wave functions with egx/y and eux/y symmetries

under a D3d point group, as pertains to the SiV0 defect. The point group D3d can

be written as the direct product D3d = D3 × i, where i is the inversion (parity)

point group. Moreover D3 is isomorphic to C3v discussed above: the three two-fold

rotations about the horizontal axes in D3 replace the three vertical mirrors in C3v.

The product with the inversion point group means that there are twelve rather than

six elements in each representation, and that representations differ for the gerade and

ungerade cases. But the method itself is the same.

5.4 The NV− Defect Center

This section contains our results for the NV− defect center in diamond. This defect

consists of a substitutional nitrogen atom immediately adjacent to a carbon vacancy,

with the defect carrying an additional electron making it negatively-charged. For

definiteness we choose the N-V axis to lie along the [111] crystallographic direction

of the (nonprimitive) face-centered cubic diamond unit cell, as in Fig. 5.1.
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Figure 5.1: The atomic structure of the NV center in diamond, with brown carbon
atoms, a blue nitrogen atom, and a green vacancy. Carbon atoms immediately adja-
cent to the vacancy are labeled C1,2,3. This visualization, as with the isosurface plots,
has been built using VESTA (Momma and Izumi (2011)).

5.4.1 Electronic Structure of NV−

The electronic structure and excited states of the 1.945 eV transition of the NV−

center have been extensively characterized, from both the directions of molecular-

orbital and group theoretic analysis (Lenef and Rand (1996); Manson et al. (2006);

Maze et al. (2011)), and of DFT (Gali et al. (2008); Larsson and Delaney (2008); Gali

et al. (2009)), with recent DFT analyses going so far as to incorporate the vibrational

effects (Deng et al. (2014); Alkauskas et al. (2014); Plakhotnik et al. (2015)) and

surface effects (Hertkorn et al. (2019)). Later we will use DFT wave functions to

calculate the EELS scattering probabilities based on the theory outlined in Section

5.2. But first we review the electronic structure of the NV− defect from a tight-

binding perspective, which yields results that are less accurate than those of DFT,

but whose results will guide our physical interpretation.

For the tight-binding description, let c1,2,3 denote the dangling bond orbitals from

the three carbon atoms C1,2,3 immediately adjacent to the vacancy, as labeled in

Fig. 5.1, and let n denote the dangling bond orbital from the N atom. Assuming

no overlap between dangling bond orbitals, we can form the following mutually-
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Figure 5.2: Left: The DFT (LSDA) predicted ground and excited states of the NV−

defect. Black and gray arrows represent the ground and excited states, respectively,
while solid and dashed arrows denote full and half occupancies, respectively. The
ground state has 3A2 (triplet) electronic configuration. The optically-allowed excited
state is the 3E (triplet) configuration resulting from single-electron transitions from

a↓1(2) to e↓x or e↓y, as is discussed by Gali et al. (2009). Right: Isosurface plots of the
wave functions involved in the excitation (red is negative, blue is positive), viewed
both along and perpendicular to the [111] N-V axis (carbon atoms are brown, nitrogen
atom is blue, vacancy is green).

orthogonal symmetry-adapted orbitals for the C3v point group of the NV− defect:

a1(1)

a1(2)

ex

ey


=



α/
√

3 α/
√

3 α/
√

3 β

−β/
√

3 −β/
√

3 −β/
√

3 α

1/
√

2 −1/
√

2 0 0

1/
√

6 1/
√

6 −2/
√

6 0





c1

c2

c3

n


, (5.13)

where α denotes the degree of mixing of carbon and nitrogen dangling bonds and

β =
√

1− α2 preserves normalization. Each symmetry-adapted orbital can have spin

up or spin down. For the NV− defect, these orbitals are populated by six electrons:

three from C1,2,3, two from the nitrogen atom, and one excess dopant electron that

makes the defect charged.

Fig. 5.2 shows the electronic configurations predicted by DFT (LSDA) for the

ground state and for the optically-allowed excited state of interest here. Spin-orbit

interactions lift the degeneracy of spin up and spin down orbitals, such that the
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ground state is populated by an excess of spin up electrons (similar to Hund’s rule

from atomic theory). The excited state corresponds to the promotion of an electron

from a↓1(2) to e↓x or e↓y. The excited state is regarded as containing half-occupied e↓y

and e↓y orbitals, which preserves the C3v symmetry. The excitation preserves electron

spin (i.e., there are no spin flips). The LSDA difference in system energy between the

constrained excited state and ground state is 1.708 eV, which is to be compared with

the accepted experimental value of 1.945 eV. The discrepancy of 0.23 eV is typical of

such DFT predictions, and apart from slightly affecting the predicted energy position

of the NV− spectral signature, it does not cause any substantial inaccuracy in the

present work. The relevant DFT wave functions are also shown in Fig. 5.2; they

qualitatively resemble the symmetry-adapted orbitals given above.

It is also instructive to use the symmetry-adapted orbitals to construct the tran-

sition charges ēxa1(2) and ēya1(2) and their associated dipole moments. Assuming

for simplicity that the bond orbitals are completely separated in space, the transition

charges have the following simple approximate forms, obtained from the tight-binding

orbitals of Eq. 5.13:

ēxa1(2) ≈ β√
6

(−|c1|2 + |c2|2),

ēya1(2) ≈ β√
18

(−|c1|2 − |c2|2 + 2|c3|2).

(5.14)

For convenience, we introduce x̂ and ŷ perpendicular to the [111] N-V axis and

ẑ parallel to it: x̂ = 1√
2
[1̄, 1, 0], ŷ = 1√

6
[1̄, 1̄, 2], ẑ = 1√

3
[111]. We then use an ansatz

for the dipole moments p1,2,3 of the dangling bonds |c1,2,3|2, consisting of parallel

component p‖ and a perpendicular component p⊥:

p1,2 = p⊥

(
∓
√

3

2
x̂− 1

2
ŷ

)
− p‖ẑ,

p3 = p⊥ŷ − p‖ẑ.

(5.15)
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Figure 5.3: The two transition charges for the NV− excitation shown in Fig. 5.2.
Each transition charge is viewed both along and perpendicular to the N-V axis [111],
and each has an obvious dipole character indicative of an optically-allowed excitation
(cyan is negative, yellow is positive).

Applying this ansatz to Eq. 5.14, the transition dipole moments adopt especially

simple forms given by

p(ēxa1(2)) ≈ β√
6

(−p1 + p2) =
βp⊥√

2
x̂,

p(ēya1(2)) ≈ β√
18

(−p1 − p2 + 2p3) =
βp⊥√

2
ŷ.

(5.16)

Neither of these dipole moments has a parallel component. Their forms imply that, in

the decay of the excited state to the ground state, the NV− center emits unpolarized

photons traveling along the N-V axis.

Fig. 5.3 shows the transition charges formed from the DFT wave functions in

Fig. 5.2. The DFT transition charges show good correspondence with the tight-

binding expressions given above. Viewed along the [111] N-V axis, the DFT transition

charges posses an obvious dipole character indicative of an optically-allowed transi-
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Figure 5.4: Calculation of STEM-EELS maps for NV− viewed along the [111] N-V
axis. (a–c) Projected transition charge, projected Møller potential and point-probe

STEM-EELS map for transition a↓1(2) → e↓x. (d–f) Analogous data for transition

a↓1(2) → e↓y. (g) Total point-probe STEM-EELS map (sum of (c) and (f)) showing
three-fold rotational symmetry consistent with the C3v point group. (h) Total STEM-
EELS map for Gaussian probe with 1 Å FWHM.

tion. From the DFT transition charges we find βp⊥ ≈ 1.38 Å, which, for comparison,

has the same order of magnitude as that for a hydrogen 1s↔ 2p transition.

5.4.2 Predictions of NV− STEM-EELS Maps

Fig. 5.4 demonstrates the calculation of the STEM-EELS map of NV− viewed

along the [111] N-V axis. The transition charges in Figs. 5.4a and 5.4d are localized

to within a few bond lengths of the defect. By comparison, the Møller potentials

Figs. 5.4b and 5.4e extend over about 5 nm, attributable to the inelastic delocalization

at this relatively low energy loss (∼ 1 eV). The STEM-EELS maps exhibit a similar

degree of delocalization. It would not be possible to observe the partial STEM-EELS

maps in Fig. 5.4c and 5.4f, but only the total map shown in Fig. 5.4g (or Fig. 5.4h),

which is the sum of the two partial maps. The total STEM-EELS maps show three

symmetric lobes of higher intensity near the center of the defect, corresponding to

115



0

0.5

1

1.5

10
-6

0

0.5

1

1.5

10
-6

0

0.5

1

1.5

10
-6

Figure 5.5: NV− in three orientations. (a–c) STEM-EELS map for Gaussian probe
with 1 Å FWHM, viewed along [111], [110], and [112̄], respectively. The green dot
marks the position of the vacancy. The inclination with respect to the [111] N-V axis
and the corresponding plane-wave cross-section are given in each case.

the positions of the three dangling bonds c1,2,3 adjacent to the vacancy. The total

map in Fig. 5.4h includes the blurring effect of a Gaussian-shaped STEM probe with

1 Å FWHM.

Fig. 5.5 shows STEM-EELS maps of the NV− center viewed along three orien-

tations. The three orientations represent a rotation about the x̂-axis defined above,

which lies horizontal throughout Fig. 5.5. In each orientation, the lobes of higher in-

tensity correspond to the dangling bonds c1,2,3, as seen in projection. From the maps

we conclude that it is possible in principle to locate the NV− center transversely to

within about 1 nm. An extremely important consideration is the intensity (scattering

probability) obtained in the STEM-EELS maps. From Fig. 5.5 we see that the inten-

sity is approximately 10−6 over an area approximately 1 nm2. Fig. 5.5 also states the

cross-sections σ for exciting the NV− center using an incident electron plane wave.

The cross-sections are the integrals of the map intensities and they provide convenient

measures of the scattering probabilities. The map intensities and plane-wave cross

sections are greatest when the defect is viewed along the [111] N-V axis. A detailed

discussion of these points will be presented in Section 5.6.
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Figure 5.6: The atomic structure of the SiV center in diamond, with brown carbon
atoms, a gray silicon atom, and green (split) vacancies. Carbon atoms C1,2,3 are
labeled as per the NV center, and carbon atoms C′1,2,3 are related to C1,2,3 by inversion
about the silicon atom.

5.5 The SiV0 Defect Center

This section contains our results for the SiV0 defect center in diamond. The

unusual structure of this defect, shown in Fig. 5.6, has been recognized since early

DFT studies (Goss et al. (1996)). Unlike the NV center, where the nitrogen atom

is only slightly shifted from a carbon position in the undefected structure, the SiV0

adopts a split-vacancy configuration with the silicon atom midway between two vacant

sites. This results in a point group symmetry of D3d, which is related to C3v by a

direct product with inversion group: D3d = C3v × i.

5.5.1 Electronic Structure of SiV0

The electronic structure of the SiV0 center has been treated via quantum chemistry

(Moliver (2003)) and DFT approaches (Gali and Maze (2013); Hepp et al. (2014)). Ex-

perimental work in fully characterizing this defect is still ongoing, but recent measure-

ments by Green et al. (2019)), correcting the earlier claim of D’Haenens-Johansson

et al. (2011), support the identification of the 1.31 eV optically-allowed transition as

a 3A2g → 3Eu transition, matching the DFT prediction of Gali and Maze (2013).
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Figure 5.7: Left: The DFT (LSDA) predicted ground and excited states of the SiV0

defect, with arrow conventions following those of Fig. 5.2. The ground state has a
3A2g (triplet) electronic configuration. The optically-allowed excited state is the 3Eu
(triplet) configuration resulting from a single-electron transition from eux or euy to egx or
egy (Gali and Maze (2013)). Right: Isosurface plots of the wave functions involved in
the excitation (red is negative, blue is positive), viewed both along and perpendicular
to the SiV defect axis [111] (carbon atoms are brown, silicon atom is grey, vacancy is
green).

As before, we gain insight into these states from a tight-binding model. Once again

letting c1,2,3 denote the dangling bond orbitals from the three carbon atoms C1,2,3, we

must also include c′1,2,3 from the three carbon atoms C′1,2,3 for this geometry. The full

tight-binding treatment would require mixing with the valence orbitals of silicon, but

previous investigators Hepp et al. (2014) have found that the defect states of interest

are well-described by the carbon orbitals alone:

a
g/u
1/2 =

1√
6

((c1 + c2 + c3)± (c′1 + c′2 + c′3)) ,

eg/ux =
1

2
((c1 − c2)± (c′1 − c′2)) ,

eg/uy =
1√
12

((c1 + c2 − 2c3)± (c′1 + c′2 − 2c′3)) .

(5.17)

In these expressions, the superscripts “g” and “u” denote the gerade and ungerade

states, corresponding to the upper and lower signs, respectively. Ten electrons occupy

these defect states: six from the carbon orbitals, plus four from the silicon valence), as

illustrated by the leftmost panel of Fig. 5.7. The promotion of fully-occupied eu↓x and
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Figure 5.8: The four transition charges for the SiV0 excitation shown in Fig. 5.7.
Each transition charge is viewed both along and perpendicular to the SiV defect axis
[111], and, as with the NV− excitation, each has an obvious dipole character indicative
of an optically-allowed excitation (cyan is negative, yellow is positive).

eu↓y states to half-occupied eu↓x /e
u↓
y and eg↓x /e

g↓
y states preserves the D3d symmetry and

the electron spin. The DFT prediction for the transition energy is 1.39 eV, to be com-

pared with the experimental value of 1.31 eV. The relevant wave functions pictured

on the right in Fig. 5.7 qualitatively resemble their tight-binding counterparts.

The transition described above leads to four separate transition charges from the

orbitals of Eq. 5.17. But if we assume once again for simplicity that the bonds are

separated in space, we find only three independent transition charges:

ēgxe
u
x ≈

1

4

(
|c1|2 + |c2|2 − |c′1|2 − |c′2|2

)
,

ēgye
u
y ≈

1

12

(
|c1|2 + |c2|2 + 4|c3|2 − |c′1|2 − |c′2|2 − 4|c′3|2

)
,

ēgxe
u
y ≈ ēgye

u
x ≈
√

3

12

(
|c1|2 − |c2|2 − |c′1|2 + |c′2|2

)
.

(5.18)

To find the transition dipole moments, we reuse the ansatz of Eq. 5.15 with the

additional stipulation that the dipole moments p′1,2,3 of |c′1,2,3|2 are related to p1,2,3 by

inversion, i.e., p′1,2,3 = −p1,2,3. Inserting these expressions into Eq. 5.14, we find that
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the dipole moments of ēgxe
u
x and ēgye

u
y have components along both ŷ and the symmetry

axis ẑ, while the dipole moments of ēgxe
u
y and ēgye

u
x, equal in this approximation, lie

strictly along x̂:

p(ēgxe
u
x) ≈ (2p1 + 2p2) /4 = −1

2
p⊥ŷ − p‖ẑ,

p(ēgye
u
y) ≈ (2p1 + 2p2 + 8p3) /12 =

1

2
p⊥ŷ − p‖ẑ,

p(ēgye
u
x) ≈ p(ēgxe

u
y) ≈

√
3

12
(2p1 − 2p2) = −1

2
p⊥x̂.

(5.19)

Fig. 5.8 shows the transition charges formed from the DFT wave functions in

Fig. 5.7. As with the NV− transition charges, there is an obvious dipole nature to

these transition charges when viewed along the [111] Si-V axis. Yet what is strikingly

different for the SiV0 case is that the dipole character of ēgxe
u
x and ēgye

u
y are even

more pronounced when they are viewed along [112̄], perpendicular to the symmetry

axis. Using the DFT transition charges, we find p⊥ ≈ 0.920 Å, and p‖ ≈ 0.853 Å,

consistently among all the transitions. Again these dipole moments have the same

order of magnitude as that for a 1s↔ 2p transition in hydrogen.

As we discuss below, the fact that p‖ > p⊥/2 is significant to the character of

spectral maps obtained at different orientations. We also note that the p⊥ calcu-

lated for the SiV0 defect is inconsistent with the p⊥ calculated from the NV− defect,

highlighting the quantitative limitations of the tight-binding analysis.

5.5.2 Predictions of SiV0 STEM-EELS maps

Fig. 5.9 shows STEM-EELS maps for the SiV0 defect along three orientations.

As with the NV− case in Fig. 5.5, the maps in Fig. 5.9 indicate that it is possible in

principle to locate the defect to within about 1 nm. But the SiV0 maps are distinct

from those of the NV− case. At the [111] orientation the SiV0 map exhibits a six-fold
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Figure 5.9: SiV0 in three orientations. (a–c) STEM-EELS maps for Gaussian probe
with 1 Å FWHM, viewed along [111], [110] and [112̄], respectively. The green dots
mark the position of the split vacancy. The inclination with respect to the [111] defect
axis and the corresponding plane-wave cross-sections are given for each case.

rotational symmetry consistent with its D3d point group. At the [112̄] orientation,

the SiV0 map exhibits two vertical lobes along the defect axis arising from the dipole

component along that axis, which is in contrast to the lobes along x̂ for the NV− case.

The SiV0 map intensities and cross-sections tend to be smaller than those for NV−,

though the same order of magnitude. Moreover, as the SiV0 is rotated away from

the defect axis, the plane-wave cross-section increases, whereas under the equivalent

rotation the plane-wave cross-section for NV− decreases.

5.6 Discussion

A key conclusion from the results in Figs. 5.5 and 5.9 is that it is possible in prin-

ciple to use STEM-EELS to locate individual defect centers transversely to within

about 1 nm. Such a precision is well beyond that permitted by the diffraction limit

in photodetection. One might compare this precision to the recent nanoscale charac-

terization of the NV− charge environment by microwave spectroscopy (Mittiga et al.

(2018)), which claimed the localization of a positive charge to within 2 nm of a NV−

center by inference from orientation-specific measurements, without the ability to lo-

calize the NV− defect itself. The STEM-EELS claim of 1 nm precision is consistent
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with the inelastic delocalization v/ω that determines the upper bound on the impact

parameter at which a passing beam electron can cause an excitation, as was pointed

out by Dwyer (2014). A precision of 1 nm would also enable the crystallographic

environment of the point defect to be characterized using STEM imaging.

Another important consideration is whether the scattering probabilities in Figs. 5.5

and 5.9 would allow the detection of single defect centers with a beam electron dose

that the sample could tolerate. For the NV− and SiV0 excitations considered here,

the cross-sections for 60 keV plane wave electrons are in the ranges 1.6–3.2× 10−4 Å2

and 0.7–1.6 × 10−4 Å2, depending on orientation. By comparison, the cross-section

for 60 keV plane wave electrons to excite the C-K shell of a single carbon atom to

within a 10 eV energy window immediately above the ionization threshold (285 eV)

is 2× 10−5 Å2. Compared with this common core-level excitation, the NV− and SiV0

cross-sections are 5–15 times larger. Given this comparison and the fact that EELS

experiments have already detected single atoms via their core-level excitations (see

Varela et al. (2009); Senga and Suenaga (2015); Ramasse et al. (2013)), our results

indicate that detecting single defect centers with STEM-EELS is within reach.

The specific appearance and symmetries of the STEM-EELS maps in Figs. 5.5

and 5.9 are determined by the nature of the projected transition charges. Within the

tight-binding approximations of Sections 5.4.1 and 5.5.1, the transition charges for

NV− and SiV0 can be written in terms of the dangling carbon bonds, so the maps in

Figs. 5.5 and 5.9 can be interpreted as projections of these dangling bonds.

These transition charges explain the dependence of the NV− and SiV0 cross-

sections on orientation, as the cross-section is determined largely by the transition

charges’ dipole moments. More specifically, partial cross sections are mainly deter-

mined by the component of these dipole moments lying perpendicular to the beam.

For NV−, the cross section is largest at [111] because at that orientation the dipole
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moments of ēxa1(2) and ēya1(2) are both perpendicular to the beam. On rotating

from [111] to [112̄], the relevant component of ēxa1(2) is constant but that of ēya1(2)

decreases to zero, and hence the NV− cross section decreases accordingly. The SiV0

case is a bit more involved: At the [111] orientation, the perpendicular components of

the four transition dipoles have equal magnitudes of p⊥/2. On rotating from [111] to

[112̄], the relevant dipole components of ēgxe
u
x and ēgye

u
y both increase since p‖ > p⊥/2

for this defect. This accounts for the increase in the SiV0 cross section on rotating

from [111] to [112̄].

An important effect that has been neglected in this calculation is that of phonons

on the excitation of defect centers. Phonons give rise to multiple peaks in excitation

spectra, where each peak corresponds to the creation of a specific number of phonon

quanta within the underlying electronic excitation. In a photoluminescence spectrum,

the zero-phonon line sits at the upper edge of a sideband of lower-energy photons, rep-

resenting the relatively shallower transitions from the zero-phonon electronic excited

state to an n-phonon electronic ground state. In the EEL spectrum, the sideband

will manifest at energies above the zero-phonon line, representing excitaitions from

the zero-phonon electronic ground state to an n-phonon electronic excited state. But

while luminescence and excitation are not entirely symmetric (phonon states differ for

the excited and ground electronic states), the work of Alkauskas et al. (2014, 2016)

suggests that in either case phonons will spread the spectral intensity acorss multiple

peaks while having little effect on the total spectral intensity.

Still, detectability prospects improve when the signal is confined to a narrow en-

ergy range. This is one way that SiV0 might compete alongside NV− as an experimen-

tal candidate. While Alkauskas et al. (2014) reports that the luminescence line shape

for NV− is contained mainly within a ∼0.4 eV window, Rose et al. (2018) reports

that SiV0 emits primarily to its zero-phonon line at low temperatures. Unfortunately,
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Figure 5.10: Top: Plane-wave cross sections as a function of beam energy for
NV− (left) and Si0 (right), for the [111], [110] and [112̄] orientations. Bottom: The
Cherenkov background, approximated using the Frank-Tamm formula (Eq. 3.28) for
an integration window of 0.5 eV and a sample thickness of 100 nm.

these energy ranges may not translate directly to the EEL spectra. Electrons carry

much more momentum than photons, so one might plausibly expect more phonons

to be created by electron beams, and hence to see a slightly broader energy range in

EEL spectra than in luminescence spectra.

For unambiguous detection, one must have both an interaction cross section that

is acceptably large and a spread of spectral intensities over a range that is acceptably

small. Recent improvements in electron detection enhance the experimental feasibil-

ity, but there are many factors to weigh. It will also be important to use a dose rate

124



of beam electrons that respects the excitation lifetimes of the defects (∼ 10–20 ns

for NV− and ∼ 1 ns for SiV0), so as not to cause significant multiple excitations

which may lead to their ionization. It will also be important to minimize low-loss

background processes, such as Cherenkov radiation (past its onset for beam energies

above ∼ 52 keV), which could potentially mask spectral signatures.

Fig. 5.10 illustrates how plane-wave cross sections and Cherenkov backgrounds

vary with beam energy, and provides an example of how the benefits and costs

must be weighed. Interaction probabilities are larger at lower beam energies, but

for the inelastically-scattered electron to exit without significant spatial dispersion,

high beam energies are preferred. But at high beam energies, Cherenkov radiation

will contribute an increasing background. These considerations and more must be

weighed by experimentalists hoping to observe individual point defects using EELS.

5.7 Summary

Density function theory and a Møller potential scattering formalism were used to

calculate STEM-EELS spectral maps and plane-wave cross sections for two impor-

tant defect centers in bulk diamond: the NV− center and the SiV0 center. These

calculations indicate that STEM-EELS should in principle be able to locate individ-

ual occurrences of these defects with a precision of around 1 nm, with plane-wave

scattering cross sections of the order of 10−4 Å2. Such cross-sections are similar to

or greater than core-level EELS cross sections that have already enabled individual

atoms to be individually located. Similar conclusions are likely to apply to optically-

allowed transitions of other point defects, which warrants optimism that individual

point defects in bulk materials can be successfully probed using STEM-EELS.

Many advanced materials applications utilize such point defects, so these results

indicate that STEM-EELS could become an extremely valuable tool for the physicists,
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chemists, and materials scientists who need a detailed understanding of point defect

properties. On the experimental side, continuing improvements in detector efficiencies

will allow for an increasing proportion collected electron to be directly interpretable.

And on the theory side, calculations of spectra that include line broadening from

localized phonon modes will aid both in interpretation and in understanding the

expected signal-to-background for practical detection.
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Chapter 6

FINAL SUMMARY

This dissertation has dealt with two basic types of questions in the theory of

STEM-EELS, both motivated by the recent advent of meV EELS energy resolution

in the STEM. First, it has asked what sorts of mesoscopic STEM-EELS effects can

be observed in simple nanoscale geometries, as captured by the physical description

of the local dielectric response. The first type of question occupied Ch. 2, which ex-

plored the electrostatic approach to spectral modeling and nanoparticle shape effects,

and Ch. 3, which explored the spatial imaging of waveguide modes and electrody-

namic effects via spectral mapping. Such questions link this work with contemporary

nanophotonics and materials science. Second, this dissertation has asked what sorts

of new microscopic STEM-EELS effects can probed in the low-loss regime, given the

resolution capabilities of currently available microscopes. This second type of question

occupied Ch. 4, which developed a model for how the vibrational signals of adsorbate

molecules can be enhanced by nanoparticle surface plasmons, and Ch. 5, which ana-

lyzed the prospects for spatial localization of selected point defects in diamond using

density functional theory. Such questions link this work with contemporary surface

science and quantum materials.

The treatment of the electrostatic approach in Ch. 2 introduced two complimen-

tary approaches to simulating low-loss STEM-EEL spectra. In one approach, the

“classical” approach, the electron beam’s energy loss arises as the result of the force

applied to the passing electron by the potential arising from the material response to

it. In the other approach, the “quantum” approach, the dielectric material’s normal

modes come first, and EEL spectra are built up from the |0〉 → |1n〉 mode transition
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probabilities, for modes labeled by quantum numbers n. In the classical approach,

energy loss seems to depend on the presence of an imaginary part to the dielectric

function ε(ω), as forces acting on the beam electron upon its approach and departure

from the nanoparticle are otherwise matched. However, it was shown for a particular

case, aloof scattering from a dielectric sphere, that the “quantum” result arises nat-

urally from the “classical” result in the limit as the damping vanishes. Presumably,

this quantum-classical corresponence could be extended to include damping using a

more flexible density operator formalism for open systems.

In the electrostatic analysis of the Born-Huang model for dielectric response, the

“quantum” analysis revealed three types of modes: transverse modes at ω0, the reso-

nance frequency of the material dipoles, which have no associated macroscopic electric

field; longitudinal modes at ω` = (ε0/ε∞)1/2ω0, whose macroscopic electric field is con-

fined within the material, and zero outside; and the harmonic modes at ωh, such that

ω0 < ωh < ω`, which only exist when Re[ε(ω)] < 0. The harmonic modes of the sphere

cover a minimal frequency range for surface states, from ε(ω) = −2 to ε(ω) = −1.

With increasing aspect ratio, the prolate spheroid stretches these mode frequencies

downward toward ω0, evolving toward the limiting case of the semi-infinite cylinder.

With increasing aspect ratio, oblate spheroid stretches these mode frequencies both

downward toward ω0, for modes having an even top/bottom symmetry in surface

charge, and upward toward ω`, for modes having a top/bottom antisymmetry in sur-

face charge. The limiting frequency ε(ω) = −1, lying between ω0 and ω`, holds for

surface modes of high spatial frequencies in all geometries, as it indicates that the po-

tential near the surface depends only on local surface charge. At high enough spatial

frequencies, the relevant description for EELS shifts from dipole to impact scattering,

and an explicit k-space cutoff may be imposed to respect this limit.

The work in Ch. 3 revealed that the “classical” and “quantum” approaches to
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spectrum simulation can be extended to a beam description or mode description in-

corporating electrodynamic effects. While in the electrostatic approach to dielectric

losses significant signal is expected only where ε(ω) ≤ 0, in the electrodynamic ap-

proach modes can exist where ε(ω) > 0, modes that trap light via total internal

reflection. In the electrostatic approximation, these modes all exist at the transverse

resonance frequencies of the dielectric ω0, and do not contribute to EEL spectra. In

the electrodynamic approach, these modes have lowered frequencies and nonzero field

intensities. For electron beams piercing thick particles, momentum conservation con-

strains which of these modes can be excited by a beam of a particular energy, leading

(counter-intuitively) to lower-energy modes being excited by higher-energy beams.

For dielectric ribbons, the “classical” approach to numerical computations showed

how the spatial distributions of such modes should be most easily detectible for rib-

bon widths a few times the wavelength of light in the material: thinner, and the

spatial variation will not be apparent; thicker, and the standing waves will become

so closely spaced in frequency as to be indistinguishable from bulk Cherenkov loss.

The transverse electric (TE) modes appear in these spectra as sharp, narrow spikes,

and the transverse magnetic (TM) modes appear as shallow, broad bands. Together,

they combine to form standing-wave patterns in the spectral maps across the rib-

bon, with modes with more nodes appearing at higher energies. These solutions for

STEM-EELS were worked out long ago by Bolton and Chen (1995), but the spatial

variations in waveguide modes had not been explicitly shown in published work.

The “quantum” approach was applied to modeling waveguide modes in amorphous

silicon cylinders to explain the experimental results of Flauraud and Alexander (2019)

on discs of varying diameters. The waveguide modes for an unbounded cylinder split

into TE and TM modes only when the modes have azimuthal symmetry. Otherwise,

they split into hybridized EH and HE modes, which resemble TE and TM modes,
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respectively. TM and HE modes are most strongly imaged in these models, for a

beam running parallel to the cylindrical axis. Modes with the expected spatial behav-

ior were experimentally tracked across several discs, and demonstrated the expected

qualitative behavior, but appeared at energies higher than those of predicted by the

unbounded cylinder model. Upper bounds on modal energies were determined us-

ing a “thin disc” approximation, supplementing the waveguide model’s lower bounds.

The ability to interpret spatial variations in low-loss STEM-EELS signals could prove

useful for designing and characterizing engineered materials, especially when the par-

ticular causes for effects are unclear from optical measurements.

The microscopic modelling of Ch. 4 and Ch. 5 returned to the electrostatic

approach. In the model presented in Ch. 4, an adsorbate molecule (modeled as a

point dipole) on the surface of a silver nanoparticle (modeled as a prolate spheroid)

was shown to have an enhanced EEL signal. This signal enhancement is caused first

by the molecule’s experience of a stronger field due to the presence of the particle, then

by the particle’s altered field that acts back on the electron beam. The molecular

signal scales with the square of the electric field at the molecular adsorption site,

and sits atop the EEL signal of the “bare” nanoparticle. The spectral line shape

depends critically on the phase shift of the molecularly-induced electric field relative

to the beam’s Coulomb field. Nanoparticles of an appropriately small thickness (∼10

nm) and an appropriately large aspect ratio (∼10) were shown to produce signal

enhancements from 102-103, and nanoparticles tuned to the vibrational frequency of

the adsorbate could do even better, albeit with higher background signals and more

pronounced asymmetric Fano-type signatures. The ability to interpret such signals

could lead to significantly increased spatial control over molecular vibrational EELS,

and could aid in the characterization of nanoparticles.

In Ch. 5, the the output of density functional theory code was used to model two
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point defects in diamond: the negatively-charged nitrogen-vacancy center (NV−), and

the neutral silicon-vacancy center (SiV0). These two defects have different symme-

tries, but the outcomes of each could be interpreted using a tight binding model, and

simulated spectral maps indicated a possible transverse localization to around 1 nm.

The orientation dependence of the excitation probabilities was found to scale with the

component of the dipole monment of the the transition charge in the sample plane.

The calculated plane-wave scattering cross sections (∼ 10−4 Å2) are similar to the

cross-sections of core-level excitations that have already been observed, leading to

optimism that observation of such individual defects can be experimentally realized,

and that STEM-EELS could become increasingly useful as a tool for characterizing

advanced quantum materials in the coming decade.

In closing, it should be emphasized that each topic explored here contains nu-

merous opportunities for continued research. Thumbing backward through the dis-

sertation, I notice that the calculations for point defects (Ch. 5) could incorporate

vibrational broadening into the spectral signatures of the electronic transitions. Like-

wise, the work on enhanced signals from adsorbates (Ch. 4) could be extended to

treat adsorbates near a plasmonic dimer, which would lead to greater enhancement

effects, at the cost of interpretational difficulties. The treatment of electrodynamic

modes (Ch. 3) could be extended to treat exotic geometries and particle arrays, in-

cluding studies of metamaterials. And the “classical” to “quantum” transition (Ch.

2) could be extended to include damping effects in the “quantum” treatement, which

might yield insights into the nature of the classical/quantum correspondance.

This is, of course, only a partial tally. STEM-EELS is just one way of tickling the

universal elephant (Ch. 1), but its possibilities are far from exhausted.
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